Maximum-likelihood estimation in Optical Coherence Tomography in the context of the tear film dynamics

被引:12
|
作者
Huang, Jinxin [1 ]
Clarkson, Eric [2 ]
Kupinski, Matthew [3 ]
Lee, Kye-sung [4 ,7 ]
Maki, Kara L. [5 ]
Ross, David S. [5 ]
Aquavella, James V. [6 ]
Rolland, Jannick P. [7 ]
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[2] Univ Arizona, Dept Radiol, Tucson, AZ 85720 USA
[3] Univ Arizona, Coll Opt Sci, Tucson, AZ 85720 USA
[4] Korea Basic Sci Inst, Ctr Analyt Instrumentat Dev, Taejon 305806, South Korea
[5] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[6] Univ Rochester, Flaum Eye Inst, New York, NY 14642 USA
[7] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
来源
BIOMEDICAL OPTICS EXPRESS | 2013年 / 4卷 / 10期
关键词
EYE DISEASE; SCATTERING; RESOLUTION; QUALITY;
D O I
10.1364/BOE.4.001806
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Understanding tear film dynamics is a prerequisite for advancing the management of Dry Eye Disease (DED). In this paper, we discuss the use of optical coherence tomography (OCT) and statistical decision theory to analyze the tear film dynamics of a digital phantom. We implement a maximum-likelihood (ML) estimator to interpret OCT data based on mathematical models of Fourier-Domain OCT and the tear film. With the methodology of task-based assessment, we quantify the tradeoffs among key imaging system parameters. We find, on the assumption that the broadband light source is characterized by circular Gaussian statistics, ML estimates of 40 nm +/- 4 nm for an axial resolution of 1 mu m and an integration time of 5 mu s. Finally, the estimator is validated with a digital phantom of tear film dynamics, which reveals estimates of nanometer precision. (C) 2013 Optical Society of America
引用
收藏
页码:1806 / 1816
页数:11
相关论文
共 50 条
  • [1] Phantom study of tear film dynamics with optical coherence tomography and maximum-likelihood estimation
    Huang, Jinxin
    Lee, Kye-sung
    Clarkson, Eric
    Kupinski, Matthew
    Maki, Kara L.
    Ross, David S.
    Aquavella, James V.
    Rolland, Jannick P.
    OPTICS LETTERS, 2013, 38 (10) : 1721 - 1723
  • [2] IN VIVO MEASUREMENT OF TEAR FILM DYNAMICS WITH OPTICAL COHERENCE TOMOGRAPHY AND MAXIMUM-LIKELIHOOD ESTIMATION
    Rolland-Thompson, Jannick P.
    Huang, Jinxin
    Hindman, Holly Butler
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [3] TEAR FILM THICKNESS ESTIMATION USING OPTICAL COHERENCE TOMOGRAPHY AND MAXIMUM-LIKELIHOOD ESTIMATION
    Huang, Jinxin
    Tankam, Patrice
    Aquavella, James V.
    Hindman, Holly Butler
    Clarkson, Eric
    Kupinski, Matthew
    Rolland-Thompson, Jannick
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)
  • [4] In vivo thickness dynamics measurement of tear film lipid and aqueous layers with optical coherence tomography and maximum-likelihood estimation
    Huang, Jinxin
    Hindman, Holly B.
    Rolland, Jannick P.
    OPTICS LETTERS, 2016, 41 (09) : 1981 - 1984
  • [5] Application of maximum-likelihood estimation in optical coherence tomography for nanometer-class thickness estimation
    Huang, Jinxin
    Yuan, Qun
    Tankam, Patrice
    Clarkson, Eric
    Kupinski, Matthew
    Hindman, Holly B.
    Aquavella, James V.
    Rolland, Jannick P.
    Design and Quality for Biomedical Technologies VIII, 2015, 9315
  • [6] MAXIMUM-LIKELIHOOD ESTIMATION OF MAGNITUDE-SQUARED COHERENCE
    MOHNKERN, GL
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (01): : 130 - 132
  • [7] Visualization of tear film dynamics using optical coherence tomography.
    dos Santos, Valentin Aranha
    Schmetterer, Leopold
    Aschinger, Gerold
    Garhofer, Gerhard
    Werkmeister, Rene Marcel
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [8] Maximum Likelihood Estimation of Blood Velocity using Doppler Optical Coherence Tomography
    Chan, Aaron C.
    Merkle, Conrad W.
    Lam, Edmund Y.
    Srinivasan, Vivek J.
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XVIII, 2014, 8934
  • [9] Maximum-likelihood absorption tomography
    Rehacek, J
    Hradil, Z
    Zawisky, M
    Treimer, W
    Strobl, M
    EUROPHYSICS LETTERS, 2002, 59 (05): : 694 - 700
  • [10] Maximum-likelihood sequence estimation in dispersive optical channels
    Agazzi, OE
    Hueda, MR
    Carrer, HS
    Crivelli, DE
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (02) : 749 - 763