Credit card fraud detection using Machine Learning Techniques: A Comparative Analysis

被引:0
|
作者
Awoyemi, John O. [1 ]
Adetunmbi, Adebayo O. [1 ]
Oluwadare, Samuel A. [1 ]
机构
[1] Fed Univ Technol Akure, Dept Comp Sci, Akure, Nigeria
关键词
credit card fraud; data mining; naive bayes; decision tree; logistic regression; comparative analysis;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Financial fraud is an ever growing menace with far consequences in the financial industry. Data mining had played an imperative role in the detection of credit card fraud in online transactions. Credit card fraud detection, which is a data mining problem, becomes challenging due to two major reasons -first, the profiles of normal and fraudulent behaviours change constantly and secondly, credit card fraud data sets are highly skewed. The performance of fraud detection in credit card transactions is greatly affected by the sampling approach on dataset, selection of variables and detection technique(s) used. This paper investigates the performance of naive bayes, k-nearest neighbor and logistic regression on highly skewed credit card fraud data. Dataset of credit card transactions is sourced from European cardholders containing 284,807 transactions. A hybrid technique of under-sampling and oversampling is carried out on the skewed data. The three techniques are applied on the raw and preprocessed data. The work is implemented in Python. The performance of the techniques is evaluated based on accuracy, sensitivity, specificity, precision, Matthews correlation coefficient and balanced classification rate. The results shows of optimal accuracy for naive bayes, k-nearest neighbor and logistic regression classifiers are 97.92%, 97.69% and 54.86% respectively. The comparative results show that k-nearest neighbour performs better than naive bayes and logistic regression techniques.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A Review of Credit Card Fraud Detection Using Machine Learning Techniques
    Boutaher, Nadia
    Elomri, Amina
    Abghour, Noreddine
    Moussaid, Khalid
    Rida, Mohamed
    PROCEEDINGS OF 2020 5TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS (CLOUDTECH'20), 2020, : 163 - 167
  • [2] Credit Card Fraud Detection Using Machine Learning
    Sailusha, Ruttala
    Gnaneswar, V
    Ramesh, R.
    Rao, G. Ramakoteswara
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1264 - 1270
  • [3] Machine Learning Model for Credit Card Fraud Detection- A Comparative Analysis
    Sharma, Pratyush
    Banerjee, Souradeep
    Tiwari, Devyanshi
    Patni, Jagdish Chandra
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2021, 18 (06) : 789 - 796
  • [4] A Comparative Study of Machine Learning Techniques for Credit Card Fraud Detection Based on Time Variance
    Rajora, Shantanu
    Li, Dong-Lin
    Jha, Chandan
    Bharill, Neha
    Patel, Om Prakash
    Joshi, Sudhanshu
    Puthal, Deepak
    Prasad, Mukesh
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1958 - 1963
  • [5] Scalable Machine Learning Techniques for Highly Imbalanced Credit Card Fraud Detection: A Comparative Study
    Mohammed, Rafiq Ahmed
    Wong, Kok-Wai
    Shiratuddin, Mohd Fairuz
    Wang, Xuequn
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2018, 11013 : 237 - 246
  • [6] CREDIT CARD FRAUD DETECTION USING MACHINE LEARNING ALGORITHMS
    Tyagi, Rishabh
    Ranjan, Ravi
    Priya, S.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 334 - 341
  • [7] Comparative Evaluation of Machine Learning Algorithms for Credit Card Fraud Detection
    Singh, Kiran Jot
    Thakur, Khushal
    Kapoor, Divneet Singh
    Sharma, Anshul
    Bajpai, Sakshi
    Sirawag, Neeraj
    Mehta, Riya
    Chaudhary, Chitransh
    Singh, Utkarsh
    THIRD CONGRESS ON INTELLIGENT SYSTEMS, CIS 2022, VOL 1, 2023, 608 : 69 - 78
  • [8] Credit Card Fraud Detection using Machine Learning Algorithms
    Dornadula, Vaishnavi Nath
    Geetha, S.
    2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 : 631 - 641
  • [9] Credit card fraud detection using machine learning algorithms
    de Souza, Daniel H. M.
    Bordin Jr, Claudio J.
    REVISTA BRASILEIRA DE COMPUTACAO APLICADA, 2023, 15 (01): : 1 - 11
  • [10] Credit Card Fraud Detection Using Machine Learning and Predictive Models: A Comparative Study
    Sontakke, Atharv
    Yewale, Mrunali
    Zambare, Sejal
    Tendulkar, Sakshi
    Chaudhari, Anagha
    HYBRID INTELLIGENT SYSTEMS, HIS 2021, 2022, 420 : 171 - 180