On hamiltonicity of P 3-dominated graphs

被引:5
|
作者
Broersma, H. J. [2 ]
Vumar, E. [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
关键词
Claw-free graph; Quasi-claw-free graph; Hamiltonian cycle; P-3-dominated graph; CYCLES;
D O I
10.1007/s00186-008-0260-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce a new class of graphs which we call P (3)-dominated graphs. This class properly contains all quasi-claw-free graphs, and hence all claw-free graphs. Let G be a 2-connected P (3)-dominated graph. We prove that G is hamiltonian if alpha(G (2)) a parts per thousand currency sign kappa(G), with two exceptions: K (2,3) and K (1,1,3). We also prove that G is hamiltonian, if G is 3-connected and |V(G)| a parts per thousand currency sign 5 delta(G) - 5. These results extend known results on (quasi-)claw-free graphs.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 50 条
  • [41] ROBUST HAMILTONICITY OF DIRAC GRAPHS
    Krivelevich, Michael
    Lee, Choongbum
    Sudakov, Benny
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (06) : 3095 - 3130
  • [42] Hamiltonicity in Prime Sum Graphs
    Chen, Hong-Bin
    Fu, Hung-Lin
    Guo, Jun-Yi
    GRAPHS AND COMBINATORICS, 2021, 37 (01) : 209 - 219
  • [43] Hamiltonicity in convex bipartite graphs
    Kowsika, P.
    Divya, V.
    Sadagopan, N.
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2019, 11 (01) : 40 - 52
  • [44] Hamiltonicity of topological grid graphs
    Zamfirescu, Christina
    Zamfirescu, Tudor
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2007, 13 (11) : 1791 - 1800
  • [45] Toughness, hamiltonicity and split graphs
    Kratsch, D
    Lehel, J
    Muller, H
    DISCRETE MATHEMATICS, 1996, 150 (1-3) : 231 - 245
  • [46] Hamiltonicity of covering graphs of trees
    Bradshaw, Peter
    Ge, Zhilin
    Stacho, Ladislav
    DISCRETE APPLIED MATHEMATICS, 2024, 357 : 449 - 464
  • [47] Hamiltonicity of complements of total graphs
    Ma, Guoyan
    Wu, Baoyindureng
    DISCRETE GEOMETRY, COMBINATORICS AND GRAPH THEORY, 2007, 4381 : 109 - +
  • [48] Domination Number and Hamiltonicity of Graphs
    Li, Rao
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 111 : 279 - 282
  • [49] Hamiltonicity of complements of middle graphs
    An, Xinhui
    Wu, Baoyindureng
    DISCRETE MATHEMATICS, 2007, 307 (9-10) : 1178 - 1184
  • [50] SPECTRAL RADIUS AND HAMILTONICITY OF GRAPHS
    Yu, Guidong
    Fang, Yi
    Fan, Yizheng
    Cai, Gaixiang
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (04) : 951 - 974