On hamiltonicity of P 3-dominated graphs

被引:5
|
作者
Broersma, H. J. [2 ]
Vumar, E. [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
关键词
Claw-free graph; Quasi-claw-free graph; Hamiltonian cycle; P-3-dominated graph; CYCLES;
D O I
10.1007/s00186-008-0260-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce a new class of graphs which we call P (3)-dominated graphs. This class properly contains all quasi-claw-free graphs, and hence all claw-free graphs. Let G be a 2-connected P (3)-dominated graph. We prove that G is hamiltonian if alpha(G (2)) a parts per thousand currency sign kappa(G), with two exceptions: K (2,3) and K (1,1,3). We also prove that G is hamiltonian, if G is 3-connected and |V(G)| a parts per thousand currency sign 5 delta(G) - 5. These results extend known results on (quasi-)claw-free graphs.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 50 条
  • [31] Hamiltonicity of Token Graphs of Some Join Graphs
    Adame, Luis Enrique
    Rivera, Luis Manuel
    Trujillo-Negrete, Ana Laura
    SYMMETRY-BASEL, 2021, 13 (06):
  • [32] Toughness and prism-hamiltonicity of P4-free graphs
    Ellingham, M. N.
    Nowbandegani, Pouria Salehi
    Shan, Songling
    DISCRETE APPLIED MATHEMATICS, 2020, 284 : 201 - 206
  • [33] Hamiltonicity of vertex-transitive graphs of order 4p
    Kutnar, Klavdija
    Marusic, Dragan
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (02) : 423 - 438
  • [34] Hamiltonicity and colorings of arrangement graphs
    Felsner, S
    Hurtado, F
    Noy, M
    Streinu, I
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 155 - 164
  • [35] The matching number and Hamiltonicity of graphs
    Li, Rao
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 1094 - 1095
  • [36] Hamiltonicity in Prime Sum Graphs
    Hong-Bin Chen
    Hung-Lin Fu
    Jun-Yi Guo
    Graphs and Combinatorics, 2021, 37 : 209 - 219
  • [37] NEIGHBORHOOD UNIONS AND HAMILTONICITY OF GRAPHS
    SHEN, RQ
    TIAN, F
    DISCRETE MATHEMATICS, 1995, 141 (1-3) : 213 - 225
  • [38] Hamiltonicity in connected regular graphs
    Cranston, Daniel W.
    Suil, O.
    INFORMATION PROCESSING LETTERS, 2013, 113 (22-24) : 858 - 860
  • [39] ON THE HAMILTONICITY OF RANDOM BIPARTITE GRAPHS
    Shang, Yilun
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (02): : 163 - 173
  • [40] Hamiltonicity in Split Graphs - A Dichotomy
    Renjith, P.
    Sadagopan, N.
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, 2017, 10156 : 320 - 331