On hamiltonicity of P 3-dominated graphs

被引:5
|
作者
Broersma, H. J. [2 ]
Vumar, E. [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
关键词
Claw-free graph; Quasi-claw-free graph; Hamiltonian cycle; P-3-dominated graph; CYCLES;
D O I
10.1007/s00186-008-0260-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce a new class of graphs which we call P (3)-dominated graphs. This class properly contains all quasi-claw-free graphs, and hence all claw-free graphs. Let G be a 2-connected P (3)-dominated graph. We prove that G is hamiltonian if alpha(G (2)) a parts per thousand currency sign kappa(G), with two exceptions: K (2,3) and K (1,1,3). We also prove that G is hamiltonian, if G is 3-connected and |V(G)| a parts per thousand currency sign 5 delta(G) - 5. These results extend known results on (quasi-)claw-free graphs.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 50 条
  • [1] Neighborhood Union Conditions for Hamiltonicity of P 3-Dominated Graphs
    Ma, Xiaoling
    Vumar, Elkin
    GRAPHS AND COMBINATORICS, 2014, 30 (06) : 1499 - 1511
  • [2] On hamiltonicity of P3-dominated graphs
    H. J. Broersma
    E. Vumar
    Mathematical Methods of Operations Research, 2009, 69 : 297 - 306
  • [3] Neighborhood Union Conditions for Hamiltonicity of P3-Dominated Graphs
    Xiaoling Ma
    Elkin Vumar
    Graphs and Combinatorics, 2014, 30 : 1499 - 1511
  • [4] Neighborhood Union Conditions for Hamiltonicity of P3-dominated Graphs II
    Ma, Xiaoling
    Vumar, Elkin
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (04): : 367 - 373
  • [5] Hamiltonicity of 3-Arc Graphs
    Xu, Guangjun
    Zhou, Sanming
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1283 - 1299
  • [6] Hamiltonicity of 3-Arc Graphs
    Guangjun Xu
    Sanming Zhou
    Graphs and Combinatorics, 2014, 30 : 1283 - 1299
  • [7] Hamiltonicity of 3tEC Graphs with α = κ+1
    He, Huanying
    An, Xinhui
    Zhao, Zongjun
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [8] Hamiltonicity in graphs with few P4's
    University of Cologne, Cologne, D-50931, Germany
    不详
    Comput Vienna New York, 3 (213-225):
  • [9] HAMILTONICITY IN GRAPHS WITH FEW P-4S
    HOCHSTATTLER, W
    TINHOFER, G
    COMPUTING, 1995, 54 (03) : 213 - 225
  • [10] Hamiltonicity of 3-connected line graphs
    Yang, Weihua
    Xiong, Liming
    Lai, Hongjian
    Guo, Xiaofeng
    APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 1835 - 1838