Different Latent Variables Learning in Variational Autoencoder

被引:0
|
作者
Xu, Qingyang [1 ]
Yang, Yiqin [1 ]
Wu, Zhe [1 ]
Zhang, Li [1 ]
机构
[1] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China
关键词
variational autoencoder; probabilistic model; latent Variable; MNIST;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised learning is a good neural network training way. However, the unsupervised learning algorithm is rare. The generative model is an interesting algorithm which can generate the similar data as the sample data by building a probabilistic model of the input data, and it can be used for unsupervised learning. Variational autoencoder is a typical generative model which is different from common autoencoder that a probabilistic parameter layer follows the hidden layer. Some new data can be reconstructed according to probabilistic model parameters. The probabilistic model parameter is the latent variable. In this paper, we want to do some research to test the data reconstruct effect of the variational autoencoder by different latent variables. According to the simulation, the more latent variables the more style of the sample is.
引用
收藏
页码:508 / 511
页数:4
相关论文
共 50 条
  • [41] Variational Autoencoder based Latent Factor Decoding of Multichannel EEG for Emotion Recognition
    Li, Xiang
    Zhao, Zhigang
    Song, Dawei
    Zhang, Yazhou
    Niu, Chunyang
    Zhang, Junwei
    Huo, Jidong
    Li, Jing
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 684 - 687
  • [42] GLSR-VAE: Geodesic Latent Space Regularization for Variational AutoEncoder Architectures
    Hadjeres, Gaetan
    Nielsen, Frank
    Pachet, Francois
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 3013 - 3019
  • [43] An Exploration of the Latent Space of a Convolutional Variational Autoencoder for the Generation of Musical Instrument Tones
    Natsiou, Anastasia
    O'Leary, Sean
    Longo, Luca
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT III, 2023, 1903 : 470 - 486
  • [44] Deep Clustering Analysis via Dual Variational Autoencoder With Spherical Latent Embeddings
    Yang, Lin
    Fan, Wentao
    Bouguila, Nizar
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (09) : 6303 - 6312
  • [45] Radio Galaxy Zoo: Leveraging latent space representations from variational autoencoder
    Andrianomena, Sambatra
    Tang, Hongming
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (06):
  • [46] AN ITERATIVE METHOD FOR HYPERSPECTRAL PIXEL UNMIXING LEVERAGING LATENT DIRICHLET VARIATIONAL AUTOENCODER
    Mantripragada, Kiran
    Adler, Paul R.
    Olsen, Peder A.
    Qureshi, Faisal Z.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7527 - 7530
  • [47] Robust unsupervised image categorization based on variational autoencoder with disentangled latent representations
    Yang, Lin
    Fan, Wentao
    Bouguila, Nizar
    KNOWLEDGE-BASED SYSTEMS, 2022, 246
  • [48] LEARNING MARKOV PROCESSES WITH LATENT VARIABLES
    Higgins, Ayden
    Jochmans, Koen
    ECONOMETRIC THEORY, 2025,
  • [49] Fast and accurate variational inference for models with many latent variables
    Loaiza-Maya, Ruben
    Smith, Michael Stanley
    Nott, David J.
    Danaher, Peter J.
    JOURNAL OF ECONOMETRICS, 2022, 230 (02) : 339 - 362
  • [50] IMPROVING EMOTION CLASSIFICATION THROUGH VARIATIONAL INFERENCE OF LATENT VARIABLES
    Parthasarathy, Srinivas
    Rozgic, Viktor
    Sun, Ming
    Wang, Chao
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7410 - 7414