Different Latent Variables Learning in Variational Autoencoder

被引:0
|
作者
Xu, Qingyang [1 ]
Yang, Yiqin [1 ]
Wu, Zhe [1 ]
Zhang, Li [1 ]
机构
[1] Shandong Univ, Sch Mech Elect & Informat Engn, Weihai 264209, Peoples R China
关键词
variational autoencoder; probabilistic model; latent Variable; MNIST;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised learning is a good neural network training way. However, the unsupervised learning algorithm is rare. The generative model is an interesting algorithm which can generate the similar data as the sample data by building a probabilistic model of the input data, and it can be used for unsupervised learning. Variational autoencoder is a typical generative model which is different from common autoencoder that a probabilistic parameter layer follows the hidden layer. Some new data can be reconstructed according to probabilistic model parameters. The probabilistic model parameter is the latent variable. In this paper, we want to do some research to test the data reconstruct effect of the variational autoencoder by different latent variables. According to the simulation, the more latent variables the more style of the sample is.
引用
收藏
页码:508 / 511
页数:4
相关论文
共 50 条
  • [21] Sequential Learning and Regularization in Variational Recurrent Autoencoder
    Chien, Jen-Tzung
    Tsai, Chih-Jung
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1613 - 1617
  • [22] The Dreaming Variational Autoencoder for Reinforcement Learning Environments
    Andersen, Per-Arne
    Goodwin, Morten
    Granmo, Ole-Christoffer
    ARTIFICIAL INTELLIGENCE XXXV (AI 2018), 2018, 11311 : 143 - 155
  • [23] Unsupervised White Blood Cell characterization in the latent space of a Variational Autoencoder
    Tarquino, Jonathan
    Romero, Eduardo
    18TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2023, 12567
  • [24] Protein Ensemble Generation Through Variational Autoencoder Latent Space Sampling
    Mansoor, Sanaa
    Baek, Minkyung
    Park, Hahnbeom
    Lee, Gyu Rie
    Baker, David
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (07) : 2689 - 2695
  • [25] A Variational Autoencoder for Neural Temporal Point Processes with Dynamic Latent Graphs
    Yang, Sikun
    Zha, Hongyuan
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16343 - 16351
  • [26] Deep Learning and Infrared Spectroscopy: Representation Learning with a β-Variational Autoencoder
    Grossutti, Michael
    D'Amico, Joseph
    Quintal, Jonathan
    MacFarlane, Hugh
    Quirk, Amanda
    Dutcher, John R.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (25): : 5787 - 5793
  • [27] Nonsparse Learning with Latent Variables
    Zheng, Zemin
    Lv, Jinchi
    Lin, Wei
    OPERATIONS RESEARCH, 2021, 69 (01) : 346 - 359
  • [28] Variational approximations for categorical causal modeling with latent variables
    K. Humphreys
    D. M. Titterington
    Psychometrika, 2003, 68 : 391 - 412
  • [29] Variational approximations for categorical causal modeling with latent variables
    Humphreys, K
    Titterington, DM
    PSYCHOMETRIKA, 2003, 68 (03) : 391 - 412
  • [30] Learning Latent Subspaces in Variational Autoencoders
    Klys, Jack
    Snell, Jake
    Zemel, Richard
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31