Omnidirectional flat bands in chiral magnonic crystals

被引:8
|
作者
Flores-Farias, J. [1 ]
Gallardo, R. A. [1 ]
Brevis, F. [1 ]
Roldan-Molina, Alejandro [2 ]
Cortes-Ortuno, D. [3 ]
Landeros, P. [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Fis, Ave Espana 1680, Valparaiso, Chile
[2] Univ Aysen, Calle Obispo Vielmo 62, Coyhaique, Chile
[3] Univ Utrecht, Valeomagnet Lab Ft Hoofddijk, Dept Earth Sci, Budapestlaan 17, NL-3584 CD Utrecht, Netherlands
关键词
SPIN-WAVES; MORIYA INTERACTION; EXCHANGE; SYSTEMS;
D O I
10.1038/s41598-022-20539-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The magnonic band structure of two-dimensional chiral magnonic crystals is theoretically investigated. The proposed metamaterial involves a three-dimensional architecture, where a thin ferromagnetic layer is in contact with a two-dimensional periodic array of heavy-metal square islands. When these two materials are in contact, an anti-symmetric exchange coupling known as the Dzyaloshinskii-Moriya interaction (DMI) arises, which generates nonreciprocal spin waves and chiral magnetic order. The Landau-Lifshitz equation and the plane-wave method are employed to study the dynamic magnetic behavior. A systematic variation of geometric parameters, the DMI constant, and the filling fraction allows the examination of spin-wave propagation features, such as the spatial profiles of the dynamic magnetization, the isofrequency contours, and group velocities. In this study, it is found that omnidirectional flat magnonic bands are induced by a sufficiently strong Dzyaloshinskii-Moriya interaction underneath the heavy-metal islands, where the spin excitations are active. The theoretical results were substantiated by micromagnetic simulations. These findings are relevant for envisioning applications associated with spin-wave-based logic devices, where the nonreciprocity and channeling of the spin waves are of fundamental and practical scientific interest.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Skyrmion based magnonic crystals
    Chen, Zhendong
    Ma, Fusheng
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (09)
  • [32] Magnonic crystals for data processing
    Chumak, A. V.
    Serga, A. A.
    Hillebrands, B.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (24)
  • [33] Magnonic crystals with complex geometry
    De, Anulekha
    Dutta, Koustuv
    Mondal, Sucheta
    Barman, Saswati
    Otani, Yoshichika
    Barman, Anjan
    PHYSICAL REVIEW B, 2021, 103 (06)
  • [34] Reversible tuning of omnidirectional band gaps in two-dimensional magnonic crystals by magnetic field and in-plane squeezing
    Mamica, S.
    Krawczyk, M.
    PHYSICAL REVIEW B, 2019, 100 (21)
  • [35] Ultra-flat bands in two-dimensional photonic crystals
    Ibanescu, Mihai
    Soljacic, Marin
    Johnson, Steven G.
    Joannopoulos, J. D.
    PHOTONIC CRYSTAL MATERIALS AND DEVICES IV, 2006, 6128
  • [36] Chiral Honeycomb Lattices of Nonplanar π-Conjugated Supramolecules with Protected Dirac and Flat Bands
    Nemoto, Ryohei
    Arafune, Ryuichi
    Nakano, Saya
    Tsuchiizu, Masahisa
    Takagi, Noriaki
    Suizu, Rie
    Uchihashi, Takashi
    Awaga, Kunio
    ACS NANO, 2024, 18 (30) : 19663 - 19671
  • [37] Magnonic Bandgaps in Metalized 1-D YIG Magnonic Crystals
    Mruczkiewicz, Maciej
    Pavlov, Evgeny S.
    Vysotskii, Sergey L.
    Krawczyk, Michal
    Filimonov, Yuri A.
    Nikitov, Sergey A.
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (11)
  • [38] Observation of magnonic band gaps in magnonic crystals with nonreciprocal dispersion relation
    Mruczkiewicz, M.
    Pavlov, E. S.
    Vysotsky, S. L.
    Krawczyk, M.
    Filimonov, Yu. A.
    Nikitov, S. A.
    PHYSICAL REVIEW B, 2014, 90 (17)
  • [39] Polarization control in magnonic vortex crystals
    Swoboda, C.
    Breckwoldt, N.
    Kobs, A.
    Jacobsohn, J.
    Vogel, A.
    Oepen, H. P.
    Meier, G.
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [40] Edge rotational magnons in magnonic crystals
    Lisenkov, Ivan
    Kalyabin, Dmitry
    Nikitov, Sergey
    APPLIED PHYSICS LETTERS, 2013, 103 (20)