Omnidirectional flat bands in chiral magnonic crystals

被引:8
|
作者
Flores-Farias, J. [1 ]
Gallardo, R. A. [1 ]
Brevis, F. [1 ]
Roldan-Molina, Alejandro [2 ]
Cortes-Ortuno, D. [3 ]
Landeros, P. [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Fis, Ave Espana 1680, Valparaiso, Chile
[2] Univ Aysen, Calle Obispo Vielmo 62, Coyhaique, Chile
[3] Univ Utrecht, Valeomagnet Lab Ft Hoofddijk, Dept Earth Sci, Budapestlaan 17, NL-3584 CD Utrecht, Netherlands
关键词
SPIN-WAVES; MORIYA INTERACTION; EXCHANGE; SYSTEMS;
D O I
10.1038/s41598-022-20539-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The magnonic band structure of two-dimensional chiral magnonic crystals is theoretically investigated. The proposed metamaterial involves a three-dimensional architecture, where a thin ferromagnetic layer is in contact with a two-dimensional periodic array of heavy-metal square islands. When these two materials are in contact, an anti-symmetric exchange coupling known as the Dzyaloshinskii-Moriya interaction (DMI) arises, which generates nonreciprocal spin waves and chiral magnetic order. The Landau-Lifshitz equation and the plane-wave method are employed to study the dynamic magnetic behavior. A systematic variation of geometric parameters, the DMI constant, and the filling fraction allows the examination of spin-wave propagation features, such as the spatial profiles of the dynamic magnetization, the isofrequency contours, and group velocities. In this study, it is found that omnidirectional flat magnonic bands are induced by a sufficiently strong Dzyaloshinskii-Moriya interaction underneath the heavy-metal islands, where the spin excitations are active. The theoretical results were substantiated by micromagnetic simulations. These findings are relevant for envisioning applications associated with spin-wave-based logic devices, where the nonreciprocity and channeling of the spin waves are of fundamental and practical scientific interest.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Graph theorem for chiral exact flat bands at charge neutrality
    Sethi, Gurjyot
    Xia, Bowen
    Kim, Dongwook
    Liu, Hang
    Li, Xiaoyin
    Liu, Feng
    PHYSICAL REVIEW B, 2024, 109 (03)
  • [22] Chiral valley phonons and flat phonon bands in moire materials
    Maity, Indrajit
    Mostofi, Arash A.
    Lischner, Johannes
    PHYSICAL REVIEW B, 2022, 105 (04)
  • [23] Antiferromagnetic magnonic crystals
    Troncoso, Roberto E.
    Ulloa, Camilo
    Pesce, Felipe
    Nunez, A. S.
    PHYSICAL REVIEW B, 2015, 92 (22):
  • [24] Magnonic circuits and crystals
    Al-Wahsh, Housni
    Akjouj, Abdellatif
    Djafari-Rouhani, Bahram
    Dobrzynski, Leonard
    SURFACE SCIENCE REPORTS, 2011, 66 (02) : 29 - 75
  • [25] Magnonic Band Structure of Domain Wall Magnonic Crystals
    Wang, D.
    Zhou, Yan
    Li, Zhi-Xiong
    Nie, Yaozhuang
    Wang, Xi-Guang
    Guo, Guang-Hua
    IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (03)
  • [26] Detailed study of flat bands appearing in metallic photonic crystals
    Vala, Ali Soltani
    Sedghi, Aliasghar
    Hosseini, Naser
    Kalafi, Manouchehr
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 9, 2011, 8 (09): : 2965 - 2968
  • [27] Dipolar interaction induced band gaps and flat modes in surface-modulated magnonic crystals
    Gallardo, R. A.
    Schneider, T.
    Roldan-Molina, A.
    Langer, M.
    Fassbender, J.
    Lenz, K.
    Lindner, J.
    Landeros, P.
    PHYSICAL REVIEW B, 2018, 97 (14)
  • [28] Effects of Magnetic Parameters on Magnonic Bandgaps for Bicomponent Magnonic Crystals
    Lin, C. S.
    Lim, H. S.
    Wang, Z. K.
    Ng, S. C.
    Kuok, M. H.
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2012, 4 (06) : 660 - 662
  • [29] Thermal tuning of omnidirectional reflection bands in one-dimensional finite phononic crystals
    Chen, Zhaojiang
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (12)
  • [30] Magnonic crystals - the magnetic counterpart of photonic crystals
    Puszkarski, H
    Krawczyk, M
    INTERFACIAL EFFECTS AND NOVEL PROPERTIES OF NANOMATERIALS, 2003, 94 : 125 - 134