Omnidirectional flat bands in chiral magnonic crystals

被引:8
|
作者
Flores-Farias, J. [1 ]
Gallardo, R. A. [1 ]
Brevis, F. [1 ]
Roldan-Molina, Alejandro [2 ]
Cortes-Ortuno, D. [3 ]
Landeros, P. [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Fis, Ave Espana 1680, Valparaiso, Chile
[2] Univ Aysen, Calle Obispo Vielmo 62, Coyhaique, Chile
[3] Univ Utrecht, Valeomagnet Lab Ft Hoofddijk, Dept Earth Sci, Budapestlaan 17, NL-3584 CD Utrecht, Netherlands
关键词
SPIN-WAVES; MORIYA INTERACTION; EXCHANGE; SYSTEMS;
D O I
10.1038/s41598-022-20539-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The magnonic band structure of two-dimensional chiral magnonic crystals is theoretically investigated. The proposed metamaterial involves a three-dimensional architecture, where a thin ferromagnetic layer is in contact with a two-dimensional periodic array of heavy-metal square islands. When these two materials are in contact, an anti-symmetric exchange coupling known as the Dzyaloshinskii-Moriya interaction (DMI) arises, which generates nonreciprocal spin waves and chiral magnetic order. The Landau-Lifshitz equation and the plane-wave method are employed to study the dynamic magnetic behavior. A systematic variation of geometric parameters, the DMI constant, and the filling fraction allows the examination of spin-wave propagation features, such as the spatial profiles of the dynamic magnetization, the isofrequency contours, and group velocities. In this study, it is found that omnidirectional flat magnonic bands are induced by a sufficiently strong Dzyaloshinskii-Moriya interaction underneath the heavy-metal islands, where the spin excitations are active. The theoretical results were substantiated by micromagnetic simulations. These findings are relevant for envisioning applications associated with spin-wave-based logic devices, where the nonreciprocity and channeling of the spin waves are of fundamental and practical scientific interest.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Omnidirectional flat bands in chiral magnonic crystals
    J. Flores-Farías
    R. A. Gallardo
    F. Brevis
    Alejandro Roldán-Molina
    D. Cortés-Ortuño
    P. Landeros
    Scientific Reports, 12
  • [2] Experimental Observation of Flat Bands in One-Dimensional Chiral Magnonic Crystals
    Tacchi, Silvia
    Flores-Farias, Jorge
    Petti, Daniela
    Brevis, Felipe
    Cattoni, Andrea
    Scaramuzzi, Giuseppe
    Girardi, Davide
    Cortes-Ortuno, David
    Gallardo, Rodolfo A.
    Albisetti, Edoardo
    Carlotti, Giovanni
    Landeros, Pedro
    NANO LETTERS, 2023, 23 (14) : 6776 - 6783
  • [3] Flat band structure in chiral magnonic crystals with tunable indirect band gaps
    Wei, Fei
    Zhou, Yang
    Zhang, Wenjun
    Ren, Zhixiang
    Chen, Gengtao
    Li, Hui
    Han, Guangbing
    Yan, Shishen
    Kang, Shishou
    PHYSICAL REVIEW APPLIED, 2025, 23 (02):
  • [4] Dirac points and flat bands in two-dimensional magnonic crystals with honeycomb-kagome structure
    Liang, Yu
    Yun, Guohong
    Yang, Hui
    Bai, Narsu
    Cao, Yongjun
    AIP ADVANCES, 2024, 14 (03)
  • [5] Flat modes in one-dimensional chiral magnonic superlattices
    Flores-Farias, J.
    Brevis, F.
    Arias, R.
    Landeros, P.
    Gallardo, R. A.
    PHYSICAL REVIEW B, 2025, 111 (10)
  • [6] Flat bands in chiral multilayer graphene
    Makov, Roi
    Guinea, Francisco
    Stern, Ady
    PHYSICAL REVIEW B, 2024, 110 (19)
  • [7] Tunable Magnonic Chern Bands and Chiral Spin Currents in Magnetic Multilayers
    Hu, Zhongqiang
    Fu, Liang
    Liu, Luqiao
    PHYSICAL REVIEW LETTERS, 2022, 128 (21)
  • [8] Chiral flat bands: Existence, engineering, and stability
    Ramachandran, Ajith
    Andreanov, Alexei
    Flach, Sergej
    PHYSICAL REVIEW B, 2017, 96 (16)
  • [9] Invisible flat bands on a topological chiral edge
    Xu, Youjiang
    Titvinidze, Irakli
    Hofstetter, Walter
    PHYSICAL REVIEW B, 2022, 106 (22)
  • [10] Nonuniform Spin-Wave Softening in Two-Dimensional Magnonic Crystals as a Tool for Opening Omnidirectional Magnonic Band Gaps
    Mamica, S.
    Krawczyk, M.
    Grundler, D.
    PHYSICAL REVIEW APPLIED, 2019, 11 (05)