Stability and error analysis of mixed finite-volume methods for advection dominated problems

被引:13
|
作者
Brezzi, F
Marini, LD
Micheletti, S
Pietra, P
Sacco, R
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
[2] CNR, Ist Matemat Appl & Tecnol Informat, I-27100 Pavia, Italy
[3] Politecn Milan, MOX, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
finite volumes; mixed finite elements; convection-dominated flows; semiconductors; jump stabilization;
D O I
10.1016/j.camwa.2006.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a convection-diffusion-reaction problem, and we analyze a stabilized mixed finite-volume scheme introduced in [1]. The scheme is presented in the format of discontinuous Galerkin methods, and error bounds are given, proving O(h(1/2)) convergence in the L-2-norm for the scalar variable, which is approximated with piecewise constant elements. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:681 / 696
页数:16
相关论文
共 50 条
  • [41] LOCAL ERROR ANALYSIS OF DISCONTINUOUS GALERKIN METHODS FOR ADVECTION-DOMINATED ELLIPTIC LINEAR-QUADRATIC OPTIMAL CONTROL PROBLEMS
    Leykekhman, Dmitriy
    Heinkenschloss, Matthias
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (04) : 2012 - 2038
  • [42] On the analysis of finite volume methods for evolutionary problems
    Morton, KW
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) : 2195 - 2222
  • [43] First, second, and third order finite-volume schemes for advection-diffusion
    Nishikawa, Hiroaki
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 273 : 287 - 309
  • [44] Applications of a finite-volume algorithm for incompressible MHD problems
    Vantieghem, S.
    Sheyko, A.
    Jackson, A.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 204 (02) : 1376 - 1395
  • [45] Stability analysis of the cell centered finite-volume Muscl method on unstructured grids
    F. Haider
    J.-P. Croisille
    B. Courbet
    Numerische Mathematik, 2009, 113 : 555 - 600
  • [46] Stability analysis of the cell centered finite-volume MUSCL method on unstructured grids
    Haider, F.
    Croisille, J. -P.
    Courbet, B.
    NUMERISCHE MATHEMATIK, 2009, 113 (04) : 555 - 600
  • [47] Stability of gravity currents generated by finite-volume releases
    Mathunjwa, Jochonia S.
    Hogg, Andrew J.
    JOURNAL OF FLUID MECHANICS, 2006, 562 : 261 - 278
  • [48] Hydrodynamic analysis and optimization of the Titan submarine via the SPH and Finite-Volume methods
    Mogan, S. R. Carberry
    Chen, D.
    Hartwig, J. W.
    Sahin, I
    Tafuni, A.
    COMPUTERS & FLUIDS, 2018, 174 : 271 - 282
  • [49] Stabilization of advection dominated problems through a generalized finite element method
    Shilt, Troy
    O'Hara, Patrick J.
    McNamara, Jack J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 383
  • [50] A posteriori error analysis of mixed finite element methods for stress-assisted diffusion problems
    Gatica, Gabriel N.
    Gomez-Vargas, Bryan
    Ruiz-Baier, Ricardo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 409