Stability and error analysis of mixed finite-volume methods for advection dominated problems

被引:13
|
作者
Brezzi, F
Marini, LD
Micheletti, S
Pietra, P
Sacco, R
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
[2] CNR, Ist Matemat Appl & Tecnol Informat, I-27100 Pavia, Italy
[3] Politecn Milan, MOX, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
finite volumes; mixed finite elements; convection-dominated flows; semiconductors; jump stabilization;
D O I
10.1016/j.camwa.2006.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a convection-diffusion-reaction problem, and we analyze a stabilized mixed finite-volume scheme introduced in [1]. The scheme is presented in the format of discontinuous Galerkin methods, and error bounds are given, proving O(h(1/2)) convergence in the L-2-norm for the scalar variable, which is approximated with piecewise constant elements. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:681 / 696
页数:16
相关论文
共 50 条
  • [31] Discretization of coupled heat and electrical diffusion problems by finite-element and finite-volume methods
    Bradji, Abdallah
    Herbin, Raphaele
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (03) : 469 - 495
  • [32] Comparison of finite-volume schemes for diffusion problems
    Schneider, Martin
    Glaeser, Dennis
    Flemisch, Bernd
    Helmig, Rainer
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2018, 73
  • [33] Characteristic-nonconforming finite-element methods for advection-dominated diffusion problems
    Chen, ZX
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (7-8) : 1087 - 1100
  • [34] On the Reconstruction of Darcy Velocity in Finite-Volume Methods
    G. Srinivasan
    K. Lipnikov
    Transport in Porous Media, 2013, 96 : 337 - 351
  • [35] A front tracking approach for finite-volume methods
    Haenel, D.
    Voelker, F.
    Vilsmeier, R.
    Wlokas, I.
    SHOCK WAVES, VOL 2, PROCEEDINGS, 2009, : 1011 - 1016
  • [36] A posteriori error estimates for mixed finite element and finite volume methods for problems coupled through a boundary with nonmatching grids
    Arbogast, T.
    Estep, D.
    Sheehan, B.
    Tavener, S.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (04) : 1625 - 1653
  • [37] On the Reconstruction of Darcy Velocity in Finite-Volume Methods
    Srinivasan, G.
    Lipnikov, K.
    TRANSPORT IN POROUS MEDIA, 2013, 96 (02) : 337 - 351
  • [38] Finite-volume methods for isotachophoretic separation in microchannels
    Shim, Jaesool
    Dutta, Prashanta
    Ivory, Cornelius F.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2007, 52 (05) : 441 - 461
  • [39] A posteriori error analysis of multipoint flux mixed finite element methods for interface problems
    Shaohong Du
    Runchang Lin
    Zhimin Zhang
    Advances in Computational Mathematics, 2016, 42 : 921 - 945
  • [40] A posteriori error analysis of multipoint flux mixed finite element methods for interface problems
    Du, Shaohong
    Lin, Runchang
    Zhang, Zhimin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (04) : 921 - 945