Limit theorems of continuous-time random walks with tails

被引:0
|
作者
Li, Yuqiang [1 ]
机构
[1] E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Weak convergence; J(1)-topology; M-1-topology; stable Levy process; WEAK APPROXIMATION;
D O I
10.1007/s11464-013-0275-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the functional limits of continuous-time random walks (CTRWs) with tails under certain conditions. We find that the scaled CTRWs with tails converge weakly to an alpha-stable L,vy process in D([0, 1]) with M (1)-topology but the corresponding scaled CTRWs converge weakly to the same limit in D([0, 1]) with J (1)-topology.
引用
收藏
页码:371 / 391
页数:21
相关论文
共 50 条
  • [21] RANDOM WALKS WITH HEAVY TAILS AND LIMIT THEOREMS FOR BRANCHING PROCESSES WITH MIGRATION AND IMMIGRATION
    Feng, Yaqin
    Molchanov, Stanislav
    Whitmeyer, Joseph
    STOCHASTICS AND DYNAMICS, 2012, 12 (01)
  • [22] Continuous-time random walks: Simulation of continuous trajectories
    Kleinhans, D.
    Friedrich, R.
    PHYSICAL REVIEW E, 2007, 76 (06):
  • [23] Limit theorems for random walks
    Bendikov, Alexander
    Cygan, Wojciech
    Trojan, Bartosz
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (10) : 3268 - 3290
  • [24] On Linnik's continuous-time random walks
    Huillet, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (14): : 2631 - 2652
  • [25] Continuous-time random walks and Levy walks with stochastic resetting
    Zhou, Tian
    Xu, Pengbo
    Deng, Weihua
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [26] Continuous-time random walks on bounded domains
    Burch, Nathanial
    Lehoucq, R. B.
    PHYSICAL REVIEW E, 2011, 83 (01):
  • [27] Transience of continuous-time conservative random walks
    Bhattacharya, Satyaki
    Volkov, Stanislav
    JOURNAL OF APPLIED PROBABILITY, 2025, 62 (01) : 153 - 171
  • [28] Ergodic transitions in continuous-time random walks
    Saa, Alberto
    Venegeroles, Roberto
    PHYSICAL REVIEW E, 2010, 82 (03):
  • [29] Continuous-time random walks with reset events
    Montero, Miquel
    Maso-Puigdellosas, Axel
    Villarroel, Javier
    EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (09):
  • [30] Noncolliding system of continuous-time random walks
    Esaki, Syota
    PACIFIC JOURNAL OF MATHEMATICS FOR INDUSTRY, 2014, 6