Transience of continuous-time conservative random walks

被引:0
|
作者
Bhattacharya, Satyaki [1 ,2 ]
Volkov, Stanislav [1 ,2 ]
机构
[1] Lund Univ, Lund, Sweden
[2] Lund Univ, Ctr Math Sci, Box 118, SE-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
Random flight; non-time-homogeneous Markov chain; conservative random walk; transience; recurrence;
D O I
10.1017/jpr.2024.46
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider two continuous-time generalizations of conservative random walks introduced in Englander and Volkov (2022), an orthogonal and a spherically symmetrical one; the latter model is also known as random flights. For both models, we show the transience of the walks when d >= 2 and that the rate of direction changing follows a power law t(-alpha),0 < alpha <= 1, or the law (lnt)(-beta) where beta > 2.
引用
收藏
页码:153 / 171
页数:19
相关论文
共 50 条
  • [1] Recurrence and Transience of Continuous-Time Open Quantum Walks
    Bardet, Ivan
    Bringuier, Hugo
    Pautrat, Yan
    Pellegrini, Clement
    SEMINAIRE DE PROBABILITES L, 2019, 2252 : 493 - 518
  • [2] From Continuous-Time Random Walks to Continuous-Time Quantum Walks: Disordered Networks
    Muelken, Oliver
    Blumen, Alexander
    NONLINEAR PHENOMENA IN COMPLEX SYSTEMS: FROM NANO TO MACRO SCALE, 2014, : 189 - 197
  • [3] Heterogeneous continuous-time random walks
    Grebenkov, Denis S.
    Tupikina, Liubov
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [5] Nonindependent continuous-time random walks
    Montero, Miquel
    Masoliver, Jaume
    PHYSICAL REVIEW E, 2007, 76 (06):
  • [6] Evanescent continuous-time random walks
    Abad, E.
    Yuste, S. B.
    Lindenberg, Katja
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [7] MONOTONICITY FOR CONTINUOUS-TIME RANDOM WALKS
    Lyons, Russell
    White, Graham
    ANNALS OF PROBABILITY, 2023, 51 (03): : 1112 - 1138
  • [8] Time averages in continuous-time random walks
    Thiel, Felix
    Sokolov, Igor M.
    PHYSICAL REVIEW E, 2017, 95 (02)
  • [9] Conservative and Semiconservative Random Walks: Recurrence and Transience
    Abramov, Vyacheslav M.
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (03) : 1900 - 1922
  • [10] Conservative and Semiconservative Random Walks: Recurrence and Transience
    Vyacheslav M. Abramov
    Journal of Theoretical Probability, 2018, 31 : 1900 - 1922