Transience of continuous-time conservative random walks

被引:0
|
作者
Bhattacharya, Satyaki [1 ,2 ]
Volkov, Stanislav [1 ,2 ]
机构
[1] Lund Univ, Lund, Sweden
[2] Lund Univ, Ctr Math Sci, Box 118, SE-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
Random flight; non-time-homogeneous Markov chain; conservative random walk; transience; recurrence;
D O I
10.1017/jpr.2024.46
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider two continuous-time generalizations of conservative random walks introduced in Englander and Volkov (2022), an orthogonal and a spherically symmetrical one; the latter model is also known as random flights. For both models, we show the transience of the walks when d >= 2 and that the rate of direction changing follows a power law t(-alpha),0 < alpha <= 1, or the law (lnt)(-beta) where beta > 2.
引用
收藏
页码:153 / 171
页数:19
相关论文
共 50 条
  • [41] LONG-TIME TAILS IN CONTINUOUS-TIME RANDOM-WALKS
    SCHNORER, H
    BLUMEN, A
    PHYSICAL REVIEW A, 1990, 41 (10): : 5702 - 5704
  • [42] First passage time problem for biased continuous-time random walks
    Rangarajan, G
    Ding, MZ
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2000, 8 (02) : 139 - 145
  • [43] FROM CLASSICAL DYNAMICS TO CONTINUOUS-TIME RANDOM-WALKS
    ZWANZIG, R
    JOURNAL OF STATISTICAL PHYSICS, 1983, 30 (02) : 255 - 262
  • [44] CONTINUOUS-TIME RANDOM-WALKS AND THE FRACTIONAL DIFFUSION EQUATION
    ROMAN, HE
    ALEMANY, PA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (10): : 3407 - 3410
  • [45] Clustered continuous-time random walks: diffusion and relaxation consequences
    Weron, Karina
    Stanislavsky, Aleksander
    Jurlewicz, Agnieszka
    Meerschaert, Mark M.
    Scheffler, Hans-Peter
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2142): : 1615 - 1628
  • [46] A lattice-model representation of continuous-time random walks
    Campos, Daniel
    Mendez, Vicenc
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (08)
  • [47] State-switching continuous-time correlated random walks
    Michelot, Theo
    Blackwell, Paul G.
    METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (05): : 637 - 649
  • [48] Correlated continuous-time random walks in external force fields
    Magdziarz, Marcin
    Metzler, Ralf
    Szczotka, Wladyslaw
    Zebrowski, Piotr
    PHYSICAL REVIEW E, 2012, 85 (05)
  • [49] Continuous-time quantum random walks require discrete space
    Manouchehri, K.
    Wang, J. B.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (45) : 13773 - 13785
  • [50] Continuous-time random walks that alter environmental transport properties
    Angstmann, C.
    Henry, B. I.
    PHYSICAL REVIEW E, 2011, 84 (06):