Transience of continuous-time conservative random walks

被引:0
|
作者
Bhattacharya, Satyaki [1 ,2 ]
Volkov, Stanislav [1 ,2 ]
机构
[1] Lund Univ, Lund, Sweden
[2] Lund Univ, Ctr Math Sci, Box 118, SE-22100 Lund, Sweden
基金
瑞典研究理事会;
关键词
Random flight; non-time-homogeneous Markov chain; conservative random walk; transience; recurrence;
D O I
10.1017/jpr.2024.46
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider two continuous-time generalizations of conservative random walks introduced in Englander and Volkov (2022), an orthogonal and a spherically symmetrical one; the latter model is also known as random flights. For both models, we show the transience of the walks when d >= 2 and that the rate of direction changing follows a power law t(-alpha),0 < alpha <= 1, or the law (lnt)(-beta) where beta > 2.
引用
收藏
页码:153 / 171
页数:19
相关论文
共 50 条
  • [21] CONTINUOUS-TIME RANDOM-WALKS ON RANDOM LATTICES WITH TRAPS
    WEN, C
    LIU, FS
    CHINESE PHYSICS-ENGLISH TR, 1986, 6 (04): : 867 - 872
  • [22] CONTINUOUS-TIME RANDOM-WALKS ON RANDOM-MEDIA
    MCCARTHY, JF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (11): : 2495 - 2503
  • [23] Functional convergence of continuous-time random walks with continuous paths
    Magdziarz, Marcin
    Zebrowski, Piotr
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (05)
  • [24] LIMIT THEOREMS FOR SOME CONTINUOUS-TIME RANDOM WALKS
    Jara, M.
    Komorowski, T.
    ADVANCES IN APPLIED PROBABILITY, 2011, 43 (03) : 782 - 813
  • [25] Continuous-Time Random Walks under Finite Concentrations
    V. P. Shkilev
    Journal of Experimental and Theoretical Physics, 2022, 134 : 85 - 94
  • [26] ASYMPTOTIC SOLUTIONS OF CONTINUOUS-TIME RANDOM-WALKS
    SHLESING.MF
    JOURNAL OF STATISTICAL PHYSICS, 1974, 10 (05) : 421 - 434
  • [27] Limit theorems of continuous-time random walks with tails
    Yuqiang Li
    Frontiers of Mathematics in China, 2013, 8 : 371 - 391
  • [28] DISCRETE VERSUS CONTINUOUS-TIME RANDOM-WALKS
    MAES, D
    VANDENBROECK, C
    JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (5-6) : 1089 - 1102
  • [29] Complex obtuse random walks and their continuous-time limits
    Attal, S.
    Deschamps, J.
    Pellegrini, C.
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 165 (1-2) : 65 - 116
  • [30] Limit theorems of continuous-time random walks with tails
    Li, Yuqiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (02) : 371 - 391