Compass aided visual-inertial odometry

被引:3
|
作者
Wang, Yandong [1 ,2 ]
Zhang, Tao [1 ]
Wang, Yuanchao [1 ,2 ]
Ma, Jingwei [1 ]
Li, Yanhui [1 ]
Han, Jingzhuang [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Visual-inertial odometry (VIO); Compass; Sliding window estimator; Inconsistency; Pre-integration; Minimum cost function; MODEL; SLAM;
D O I
10.1016/j.jvcir.2018.12.029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of vision and optimization techniques, visual-inertial odometry (VIO) has shown the capability of motion estimating in the GNSS-denied condition. The VIO can provide absolute pitch and roll angles estimating value, but no the absolute azimuth. In the paper, we proposed a VIO aided by compass, which can obtain the azimuth with respect to the north direction in the geographic frame. Moreover, aided by compass, the yaw angle estimating error was reduced to a greater degree, due to the measurement of azimuth. Furthermore, the consistency of the VIO backend estimator is improved as well, while the accuracy of the estimated pose states was also wholly improved. The aiding approach is a tightly-couple information fusion system of camera, IMU and magnetoresistive sensors. The optimization method is based on the pre-integration and bundle adjustment. In the paper, we derived the compass residual model based on the pre-integration model, and then its Jacobian and covariance formation were deduced to solve the nonlinear equations. The compass aided VIO software was implemented based on the Nvidia Jetson Tx2. The system was fully tested based on hardware-in-the-loop simulation and vehicle test in the real physical environment. The pose errors of VIOs with and without compass aiding were compared in the above tests. The simulation results showed that the position was and yaw errors were improved obviously; the compass aided VIO was still consistent, but the pure VIO was consistent not. The consistency character is evaluated by average NEES by Monte-Carlo in simulation. The vehicle test showed that the position error was reduced by 23%; the yaw error was reduced by 21%. As a result, the compass aided VIO not only improved the pose estimated accuracy, especially position and yaw, but also improved the consistency of VIO system. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 50 条
  • [31] Stereo Event-Based Visual-Inertial Odometry
    Wang, Kunfeng
    Zhao, Kaichun
    Lu, Wenshuai
    You, Zheng
    SENSORS, 2025, 25 (03)
  • [32] Using Vanishing Points to Improve Visual-Inertial Odometry
    Camposeco, Federico
    Pollefeys, Marc
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 5219 - 5225
  • [33] Visual-Inertial Odometry of Smartphone under Manhattan World
    Wang, YuAn
    Chen, Liang
    Wei, Peng
    Lu, XiangChen
    REMOTE SENSING, 2020, 12 (22) : 1 - 27
  • [34] Active Heading Planning for Improving Visual-Inertial Odometry
    Lee, Joohyuk
    Lee, Kyuman
    2024 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS, ICUAS, 2024, : 1085 - 1092
  • [35] Dense Visual-Inertial Odometry for Tracking of Aggressive Motions
    Ling, Yonggen
    Shen, Shaojie
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 576 - 583
  • [36] A Monocular Visual-Inertial Odometry Based on Hybrid Residuals
    Lai, Zhenghong
    Gui, Jianjun
    Xu, Dengke
    Dong, Hongbin
    Deng, Baosong
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 3304 - 3311
  • [37] Renormalization for Initialization of Rolling Shutter Visual-Inertial Odometry
    Branislav Micusik
    Georgios Evangelidis
    International Journal of Computer Vision, 2021, 129 : 2011 - 2027
  • [38] A Stereo-Based Visual-Inertial Odometry for SLAM
    Li, Yong
    Lang, ShiBing
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 594 - 598
  • [39] Control-enabled Observability in Visual-Inertial Odometry
    Bai, He
    Taylor, Clark N.
    2017 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS'17), 2017, : 822 - 829
  • [40] Continuous-Time Spline Visual-Inertial Odometry
    Mo, Jiawei
    Sattar, Junaed
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 9492 - 9498