Compass aided visual-inertial odometry

被引:3
|
作者
Wang, Yandong [1 ,2 ]
Zhang, Tao [1 ]
Wang, Yuanchao [1 ,2 ]
Ma, Jingwei [1 ]
Li, Yanhui [1 ]
Han, Jingzhuang [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Visual-inertial odometry (VIO); Compass; Sliding window estimator; Inconsistency; Pre-integration; Minimum cost function; MODEL; SLAM;
D O I
10.1016/j.jvcir.2018.12.029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of vision and optimization techniques, visual-inertial odometry (VIO) has shown the capability of motion estimating in the GNSS-denied condition. The VIO can provide absolute pitch and roll angles estimating value, but no the absolute azimuth. In the paper, we proposed a VIO aided by compass, which can obtain the azimuth with respect to the north direction in the geographic frame. Moreover, aided by compass, the yaw angle estimating error was reduced to a greater degree, due to the measurement of azimuth. Furthermore, the consistency of the VIO backend estimator is improved as well, while the accuracy of the estimated pose states was also wholly improved. The aiding approach is a tightly-couple information fusion system of camera, IMU and magnetoresistive sensors. The optimization method is based on the pre-integration and bundle adjustment. In the paper, we derived the compass residual model based on the pre-integration model, and then its Jacobian and covariance formation were deduced to solve the nonlinear equations. The compass aided VIO software was implemented based on the Nvidia Jetson Tx2. The system was fully tested based on hardware-in-the-loop simulation and vehicle test in the real physical environment. The pose errors of VIOs with and without compass aiding were compared in the above tests. The simulation results showed that the position was and yaw errors were improved obviously; the compass aided VIO was still consistent, but the pure VIO was consistent not. The consistency character is evaluated by average NEES by Monte-Carlo in simulation. The vehicle test showed that the position error was reduced by 23%; the yaw error was reduced by 21%. As a result, the compass aided VIO not only improved the pose estimated accuracy, especially position and yaw, but also improved the consistency of VIO system. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 50 条
  • [11] Unsupervised Monocular Visual-inertial Odometry Network
    Wei, Peng
    Hua, Guoliang
    Huang, Weibo
    Meng, Fanyang
    Liu, Hong
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2347 - 2354
  • [12] Direct Visual-Inertial Odometry with Stereo Cameras
    Usenko, Vladyslav
    Engel, Jakob
    Stueckler, Joerg
    Cremers, Daniel
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 1885 - 1892
  • [13] RNIN-VIO: Robust Neural Inertial Navigation Aided Visual-Inertial Odometry in Challenging Scenes
    Chen, Danpeng
    Wang, Nan
    Xu, Runsen
    Xie, Weijian
    Bao, Hujun
    Zhang, Guofeng
    2021 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR 2021), 2021, : 275 - 283
  • [14] Visual-Inertial Odometry with Point and Line Features
    Yang, Yulin
    Geneva, Patrick
    Eckenhoff, Kevin
    Huang, Guoquan
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 2447 - 2454
  • [15] The First Attempt of SAR Visual-Inertial Odometry
    Liu, Junbin
    Qiu, Xiaolan
    Ding, Chibiao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 287 - 304
  • [16] Monocular Visual-Inertial Odometry for Agricultural Environments
    Song, Kaiyu
    Li, Jingtao
    Qiu, Run
    Yang, Gaidi
    IEEE ACCESS, 2022, 10 : 103975 - 103986
  • [17] ATVIO: ATTENTION GUIDED VISUAL-INERTIAL ODOMETRY
    Liu, Li
    Li, Ge
    Li, Thomas H.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4125 - 4129
  • [18] Aerial Visual-Inertial Odometry Performance Evaluation
    Carson, Daniel J.
    Raquet, John F.
    Kauffman, Kyle J.
    PROCEEDINGS OF THE ION 2017 PACIFIC PNT MEETING, 2017, : 137 - 154
  • [19] Pose estimation by Omnidirectional Visual-Inertial Odometry
    Ramezani, Milad
    Khoshelham, Kourosh
    Fraser, Clive
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 105 : 26 - 37
  • [20] Challenges of Dynamic Environment for Visual-Inertial Odometry
    Zhu, Tao
    Ma, Huimin
    2018 3RD INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION ENGINEERING (ICRAE), 2018, : 82 - 86