Flat -vectors and their Ehrhart polynomials

被引:0
|
作者
Hibi, Takayuki [1 ]
Tsuchiya, Akiyoshi [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
关键词
Ehrhart polynomial; delta-vector; Integral convex polytope;
D O I
10.1007/s00013-016-0985-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call the delta-vector of an integral convex polytope of dimension d flat if the delta-vector is of the form (1, 0,..., 0, a,..., a, 0,..., 0), where a = 1. In this paper, we give the complete characterization of possible flat delta-vectors. Moreover, for an integral convex polytopeP. RN of dimension d, we let i(P, n) = /nP n ZN / and i*(P, n) = / n(P P) n ZN /. By this characterization, we show that for any d = 1 and for any k, l = 0 with k+ l = delta-1, there exist integral convex polytopes P and Q of dimension delta such that (i) For t = 1, ..., k, we have i(P, t) = i(Q, t), (ii) For t = 1, ..., l, we have i*(P, t) = i*(Q, t), and (iii) i(P, k+ 1) l = i(Q, k+ 1) and i*(P, l + 1) l = i*(Q, l + 1).
引用
收藏
页码:151 / 157
页数:7
相关论文
共 50 条
  • [1] Mixed Ehrhart polynomials
    Haase, Christian
    Juhnke-Kubitzke, Martina
    Sanyal, Raman
    Theobald, Thorsten
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (01):
  • [2] Characteristic and Ehrhart Polynomials
    Andreas Blass
    Bruce E. Sagan
    Journal of Algebraic Combinatorics, 1998, 7 : 115 - 126
  • [3] Ehrhart tensor polynomials
    Berg, Soeren
    Jochemko, Katharina
    Silverstein, Laura
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 539 : 72 - 93
  • [4] Characteristic and Ehrhart polynomials
    Blass, A
    Sagan, BE
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 7 (02) : 115 - 126
  • [5] INEQUALITIES AND EHRHART δ-VECTORS
    Stapledon, A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (10) : 5615 - 5626
  • [6] GENERALIZED EHRHART POLYNOMIALS
    Chen, Sheng
    Li, Nan
    Sam, Steven V.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (01) : 551 - 569
  • [7] Ehrhart h*-Vectors of Hypersimplices
    Li, Nan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 48 (04) : 847 - 878
  • [8] Ehrhart h∗-Vectors of Hypersimplices
    Nan Li
    Discrete & Computational Geometry, 2012, 48 : 847 - 878
  • [9] Notes on the roots of Ehrhart polynomials
    Bey, Christian
    Henk, Martin
    Wills, Joerg M.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (01) : 81 - 98
  • [10] Ehrhart polynomials and successive minima
    Henk, Martin
    Schuermann, Achill
    Wills, Joerg M.
    MATHEMATIKA, 2005, 52 (103-04) : 1 - 16