Parameterized maximum path coloring

被引:2
|
作者
Lampis, Michael [1 ]
机构
[1] CUNY, Grad Ctr, New York, NY 10016 USA
关键词
Path coloring; EPT graphs; Parameterized complexity; COMPLEXITY; EDGE;
D O I
10.1016/j.tcs.2013.01.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the well-known MAX PATH COLORING problem from a parameterized point of view, focusing on trees and low-treewidth networks. We observe the existence of a variety of reasonable parameters for the problem, such as the maximum degree and treewidth of the network graph, the number of available colors and the number of requests one seeks to satisfy or reject. In an effort to understand the impact of each of these parameters on the problem's complexity we study various parameterized versions of the problem deriving fixed-parameter tractability and hardness results both for undirected and bi-directed graphs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 50 条
  • [41] The Parameterized Complexity of Maximum Betweenness Centrality
    Schierreich, Simon
    Smutny, Jose Gaspar
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2024, 2024, 14637 : 221 - 233
  • [42] Maximum cut parameterized by crossing number
    Chimani M.
    Dahn C.
    Juhnke-Kubitzke M.
    Kriege N.M.
    Mutzel P.
    Nover A.
    1600, Brown University (24): : 155 - 170
  • [43] Cliquewidth III: The Odd Case of Graph Coloring Parameterized by Cliquewidth
    Golovach, Petr A.
    Lokshtanov, Daniel
    Saurabh, Saket
    Zehavi, Meirav
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 262 - 273
  • [44] Parameterized complexity of coloring problems: Treewidth versus vertex cover
    Fiala, Jiri
    Golovach, Petr A.
    Kratochvil, Jan
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (23) : 2513 - 2523
  • [45] Parameterized complexity of the list coloring reconfiguration problem with graph parameters
    Hatanaka, Tatsuhiko
    Ito, Takehiro
    Zhou, Xiao
    THEORETICAL COMPUTER SCIENCE, 2018, 739 : 65 - 79
  • [46] Maximum average degree and relaxed coloring
    Kopreski, Michael
    Yu, Gexin
    DISCRETE MATHEMATICS, 2017, 340 (10) : 2528 - 2530
  • [47] Iterative coloring extension of a maximum clique
    Caramia, M
    Dell'Olmo, P
    NAVAL RESEARCH LOGISTICS, 2001, 48 (06) : 518 - 550
  • [48] Chromatic coloring with a maximum color class
    Chen, Bor-Liang
    Huang, Kuo-Ching
    Yen, Chih-Hung
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5533 - 5537
  • [49] Approximation algorithm for maximum edge coloring
    Feng, Wangsen
    Zhang, Li'ang
    Wang, Hanpin
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (11) : 1022 - 1029
  • [50] The maximum-impact coloring polytope
    Braga, Monica
    Delle Donne, Diego
    Linfati, Rodrigo
    Marenco, Javier
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2017, 24 (1-2) : 303 - 324