Parameterized maximum path coloring

被引:2
|
作者
Lampis, Michael [1 ]
机构
[1] CUNY, Grad Ctr, New York, NY 10016 USA
关键词
Path coloring; EPT graphs; Parameterized complexity; COMPLEXITY; EDGE;
D O I
10.1016/j.tcs.2013.01.012
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the well-known MAX PATH COLORING problem from a parameterized point of view, focusing on trees and low-treewidth networks. We observe the existence of a variety of reasonable parameters for the problem, such as the maximum degree and treewidth of the network graph, the number of available colors and the number of requests one seeks to satisfy or reject. In an effort to understand the impact of each of these parameters on the problem's complexity we study various parameterized versions of the problem deriving fixed-parameter tractability and hardness results both for undirected and bi-directed graphs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 50 条
  • [21] Harmonious Coloring: Parameterized Algorithms and Upper Bounds
    Kolay, Sudeshna
    Pandurangan, Ragukumar
    Panolan, Fahad
    Raman, Venkatesh
    Tale, Prafullkumar
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2016, 2016, 9941 : 245 - 256
  • [22] Harmonious coloring: Parameterized algorithms and upper bounds
    Kolay, Sudeshna
    Pandurangan, Ragukumar
    Panolan, Fahad
    Raman, Venkatesh
    Tale, Prafullkumar
    THEORETICAL COMPUTER SCIENCE, 2019, 772 : 132 - 142
  • [23] Parameterized and Approximation Algorithms for the Load Coloring Problem
    Barbero, F.
    Gutin, G.
    Jones, M.
    Sheng, B.
    ALGORITHMICA, 2017, 79 (01) : 211 - 229
  • [24] Parameterized and Approximation Algorithms for the Load Coloring Problem
    F. Barbero
    G. Gutin
    M. Jones
    B. Sheng
    Algorithmica, 2017, 79 : 211 - 229
  • [25] Incremental List Coloring of Graphs, Parameterized by Conservation
    Hartung, Sepp
    Niedermeier, Rolf
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2010, 6108 : 258 - 270
  • [26] Path coloring on the mesh
    Rabani, Y
    37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, : 400 - 409
  • [27] On Maximum Differential Graph Coloring
    Hu, Yifana
    Kobourov, Stephen
    Veeramoni, Sank
    GRAPH DRAWING, 2011, 6502 : 274 - +
  • [28] EQUITABLE COLORING AND THE MAXIMUM DEGREE
    CHEN, BL
    LIH, KW
    WU, PL
    EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (05) : 443 - 447
  • [29] b-Coloring Parameterized by Clique-Width
    Jaffke, Lars
    Lima, Paloma T.
    Lokshtanov, Daniel
    38TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2021), 2021, 187
  • [30] On the parameterized complexity of coloring graphs in the absence of a linear forest
    Couturier, Jean-Francois
    Golovach, Petr A.
    Kratsch, Dieter
    Paulusma, Daniel
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 15 : 56 - 62