Stable border bases for ideals of points

被引:27
|
作者
Abbott, John [1 ]
Fassino, Claudia [1 ]
Torrente, Maria-Laura [2 ]
机构
[1] Univ Genoa, Dip Matemat, I-16146 Genoa, Italy
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
Empirical points; Vanishing ideal; Border bases;
D O I
10.1016/j.jsc.2008.05.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let X be a set of points whose coordinates are known with limited accuracy; our aim is to give a characterization of the vanishing ideal l(X) independent of the data uncertainty. We present a method to compute, starting from X, a polynomial basis B of l(X) which exhibits structural stability, that is, if (X) over tilde is any set of points differing only slightly from X, there exists a polynomial set (B) over tilde structurally similar to B, which is a basis of the perturbed ideal l((X) over tilde). (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:883 / 894
页数:12
相关论文
共 50 条
  • [41] Polynomial ideals for sandpiles and their Grobner bases
    Cori, R
    Rossin, D
    Salvy, B
    THEORETICAL COMPUTER SCIENCE, 2002, 276 (1-2) : 1 - 15
  • [42] THE STRUCTURE OF POLYNOMIAL IDEALS AND GROBNER BASES
    DUBE, TW
    SIAM JOURNAL ON COMPUTING, 1990, 19 (04) : 750 - 773
  • [43] GROBNER BASES FOR PRODUCTS OF DETERMINANTAL IDEALS
    ARJUNWADKAR, H
    JOURNAL OF ALGEBRA, 1995, 171 (03) : 700 - 702
  • [44] Bases of ideals and Rees valuation rings
    Heinzer, William J.
    Ratliff, Louis J., Jr.
    Rush, David E.
    JOURNAL OF ALGEBRA, 2010, 323 (03) : 839 - 853
  • [45] GROBNER BASES OF SIMPLICIAL TORIC IDEALS
    Hellus, Michael
    Hoa, Le Tuan
    Stueckrad, Juergen
    NAGOYA MATHEMATICAL JOURNAL, 2009, 196 : 67 - 85
  • [46] Minimal homogeneous bases for polynomial ideals
    Yilmaz, E
    Kiliçarslan, S
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2004, 15 (3-4) : 267 - 278
  • [47] Computing Boolean Border Bases
    Horacek, Jan
    Kreuzer, Martin
    Ekossono, Ange-Salome Messeng
    PROCEEDINGS OF 2016 18TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2016, : 465 - 472
  • [48] A POLYHEDRAL CHARACTERIZATION OF BORDER BASES
    Braun, Gabor
    Pokutta, Sebastian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (01) : 239 - 265
  • [49] Computing Coupled Border Bases
    Hashemi, Amir
    Kreuzer, Martin
    Pourkhajouei, Samira
    MATHEMATICS IN COMPUTER SCIENCE, 2020, 14 (01) : 123 - 140
  • [50] Computing Coupled Border Bases
    Amir Hashemi
    Martin Kreuzer
    Samira Pourkhajouei
    Mathematics in Computer Science, 2020, 14 : 123 - 140