Stable border bases for ideals of points

被引:27
|
作者
Abbott, John [1 ]
Fassino, Claudia [1 ]
Torrente, Maria-Laura [2 ]
机构
[1] Univ Genoa, Dip Matemat, I-16146 Genoa, Italy
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
Empirical points; Vanishing ideal; Border bases;
D O I
10.1016/j.jsc.2008.05.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let X be a set of points whose coordinates are known with limited accuracy; our aim is to give a characterization of the vanishing ideal l(X) independent of the data uncertainty. We present a method to compute, starting from X, a polynomial basis B of l(X) which exhibits structural stability, that is, if (X) over tilde is any set of points differing only slightly from X, there exists a polynomial set (B) over tilde structurally similar to B, which is a basis of the perturbed ideal l((X) over tilde). (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:883 / 894
页数:12
相关论文
共 50 条
  • [31] Computation of janet bases for toric ideals
    Blinkov, Yu.A.
    Programmirovanie, 2002, 28 (05): : 65 - 69
  • [32] ρ-HOMOGENEOUS BINOMIAL IDEALS AND PATIL BASES
    Bresinsky, H.
    Curtis, F.
    Stueckrad, J.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (03) : 823 - 845
  • [33] Computation of Janet bases for toric ideals
    Blinkov, YA
    PROGRAMMING AND COMPUTER SOFTWARE, 2002, 28 (05) : 290 - 292
  • [34] Grobner bases of ideals cogenerated by Pfaffians
    De Negri, Emanuela
    Sbarra, Enrico
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (05) : 812 - 821
  • [35] Computation of Janet Bases for Toric Ideals
    Yu. A. Blinkov
    Programming and Computer Software, 2002, 28 : 290 - 292
  • [36] Gröbner bases of contraction ideals
    Takafumi Shibuta
    Journal of Algebraic Combinatorics, 2012, 36 : 1 - 19
  • [37] Involutive bases of ideals in the ring of polynomials
    Astrelin, AV
    Golubitsky, OD
    Pankratiev, EV
    PROGRAMMING AND COMPUTER SOFTWARE, 2000, 26 (01) : 31 - 35
  • [38] Minimal Homogeneous Bases for Polynomial Ideals
    Erol Yılmaz
    Sibel Kılıçarslan
    Applicable Algebra in Engineering, Communication and Computing, 2004, 15 : 267 - 278
  • [39] Ideals with bases of unbounded Borel complexity
    Borodulin-Nadzieja, Piotr
    Glab, Szymon
    MATHEMATICAL LOGIC QUARTERLY, 2011, 57 (06) : 582 - 590
  • [40] GROBNER BASES FOR IDEALS OF σ-PBW EXTENSIONS
    Gallego, Claudia
    Lezama, Oswaldo
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (01) : 50 - 75