Hamiltonian Cycles in Directed Toeplitz Graphs

被引:0
|
作者
Malik, Shabnam [1 ]
Qureshi, Ahmad Mahmood [1 ]
机构
[1] GC Univ Lahore, Abdus Salam Sch Math Sci, Lahore, Pakistan
关键词
Toeplitz graph; Hamiltonian graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An (n x n) matrix A = (a(ij)) is called a Toeplitz matrix if it has constant values along all diagonals parallel to the main diagonal. A directed Toeplitz graph is a digraph with Toeplitz adjacency matrix. In this paper we discuss conditions for the existence of hamiltonian cycles in directed Toeplitz graphs.
引用
收藏
页码:511 / 526
页数:16
相关论文
共 50 条
  • [41] Hamiltonian cycles in covering graphs of trees
    Hell, Pavol
    Nishiyama, Hiroshi
    Stacho, Ladislav
    DISCRETE APPLIED MATHEMATICS, 2020, 282 (271-281) : 271 - 281
  • [42] Disjoint hamiltonian cycles in bipartite graphs
    Ferrara, Michael
    Gould, Ronald
    Tansey, Gerard
    Whalen, Thor
    DISCRETE MATHEMATICS, 2009, 309 (12) : 3811 - 3820
  • [43] Polyhedral graphs without Hamiltonian cycles
    Walther, H
    DISCRETE APPLIED MATHEMATICS, 1997, 79 (1-3) : 257 - 263
  • [44] Hamiltonian Cycles in Covering Graphs of Trees
    Hell, Pavol
    Nishiyama, Hiroshi
    Stacho, Ladislav
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2017, PT II, 2017, 10628 : 261 - 275
  • [45] Hamiltonian Cycles in Normal Cayley Graphs
    Juan José Montellano-Ballesteros
    Anahy Santiago Arguello
    Graphs and Combinatorics, 2019, 35 : 1707 - 1714
  • [46] MAXIMAL HAMILTONIAN CYCLES IN SQUARES OF GRAPHS
    HOBBS, AM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 26 (01) : 35 - 49
  • [47] On the number of Hamiltonian cycles in Dirac graphs
    Sárközy, GN
    Selkow, SM
    Szemerédi, E
    DISCRETE MATHEMATICS, 2003, 265 (1-3) : 237 - 250
  • [48] Hamiltonian Cycles in Cayley Graphs of Gyrogroups
    Maungchang, Rasimate
    Detphumi, Charawi
    Khachorncharoenkul, Prathomjit
    Suksumran, Teerapong
    MATHEMATICS, 2022, 10 (08)
  • [49] THIN HAMILTONIAN CYCLES ON ARCHIMEDEAN GRAPHS
    REAY, JR
    ROGERS, DG
    EUROPEAN JOURNAL OF COMBINATORICS, 1995, 16 (02) : 185 - 189
  • [50] COUNTING HAMILTONIAN CYCLES IN BIPARTITE GRAPHS
    Haanpaa, Harri
    Ostergard, Patric R. J.
    MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 979 - 995