Hamiltonian Cycles in Directed Toeplitz Graphs

被引:0
|
作者
Malik, Shabnam [1 ]
Qureshi, Ahmad Mahmood [1 ]
机构
[1] GC Univ Lahore, Abdus Salam Sch Math Sci, Lahore, Pakistan
关键词
Toeplitz graph; Hamiltonian graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An (n x n) matrix A = (a(ij)) is called a Toeplitz matrix if it has constant values along all diagonals parallel to the main diagonal. A directed Toeplitz graph is a digraph with Toeplitz adjacency matrix. In this paper we discuss conditions for the existence of hamiltonian cycles in directed Toeplitz graphs.
引用
收藏
页码:511 / 526
页数:16
相关论文
共 50 条
  • [31] Hamiltonian cycles in solid grid graphs
    Umans, C
    Lenhart, W
    38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, : 496 - 505
  • [32] On Finding Hamiltonian Cycles in Barnette Graphs
    Bagheri, Behrooz Gh
    Fleischner, Herbert
    Feder, Tomas
    Subi, Carlos
    FUNDAMENTA INFORMATICAE, 2022, 188 (01) : 1 - 14
  • [33] HAMILTONIAN CYCLES IN RANDOM REGULAR GRAPHS
    FENNER, TI
    FRIEZE, AM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (02) : 103 - 112
  • [34] Cycles of many lengths in Hamiltonian graphs
    Bucic, Matija
    Gishboliner, Lior
    Sudakov, Benny
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [35] Powers of Hamiltonian cycles in multipartite graphs
    DeBiasio, Louis
    Martin, Ryan R.
    Molla, Theodore
    DISCRETE MATHEMATICS, 2022, 345 (04)
  • [36] Hamiltonian Cycles in T-Graphs
    J. R. Reay
    T. Zamfirescu
    Discrete & Computational Geometry, 2000, 24 : 497 - 502
  • [37] Finding Large Cycles in Hamiltonian Graphs
    Feder, Tomas
    Motwani, Rajeev
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 166 - 175
  • [38] HAMILTONIAN CYCLES IN CAYLEY COLOR GRAPHS
    KLERLEIN, JB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A654 - A654
  • [39] On certain Hamiltonian cycles in planar graphs
    Böhme, T
    Harant, J
    Tkác, M
    JOURNAL OF GRAPH THEORY, 1999, 32 (01) : 81 - 96
  • [40] Hamiltonian Cycles in Normal Cayley Graphs
    Jose Montellano-Ballesteros, Juan
    Santiago Arguello, Anahy
    GRAPHS AND COMBINATORICS, 2019, 35 (06) : 1707 - 1714