Classification of flavonoid compounds by using entropy of information theory

被引:26
|
作者
Castellano, Gloria [1 ]
Gonzalez-Santander, Juan Luis [1 ]
Lara, Ana [1 ]
Torrens, Francisco [2 ]
机构
[1] Univ Catol, Fac Ciencias Expt, E-46001 Valencia, Spain
[2] Univ Valencia, Inst Univ Ciencia Mol, E-46071 Valencia, Spain
关键词
Information entropy; Molecular classification; Antioxidant activity; Flavonoid; Polyphenol; ANTIOXIDANT ACTIVITY; PHENOLIC-COMPOUNDS; POSIDONIA-OCEANICA; CAPACITY; BEHAVIOR; ACIDS;
D O I
10.1016/j.phytochem.2013.03.024
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A total of 74 flavonoid compounds are classified into a periodic table by using an algorithm based on the entropy of information theory. Seven features in hierarchical order are used to classify structurally the flavonoids. From these features, the first three mark the group or column, while the last four are used to indicate the row or period in a table of periodic classification. Those flavonoids in the same group and period are suggested to show maximum similarity in properties. Furthermore, those with only the same group will present moderate similarity. In this report, the flavonoid compounds in the table, whose experimental data in bioactivity and antioxidant properties have been previously published, are related. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:182 / 191
页数:10
相关论文
共 50 条
  • [21] Outlier detection using conditional information entropy and rough set theory
    Li, Zhaowen
    Wei, Shengxue
    Liu, Suping
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 1899 - 1918
  • [22] Using fuzzy logic and entropy theory to risk assessment of the information security
    Zhao, DM
    Wang, JH
    Wu, J
    Ma, JF
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 2448 - 2453
  • [23] The use of classification methods for modeling the antioxidant activity of flavonoid compounds
    Weber, Karen C.
    Honorio, Kathia M.
    Bruni, Aline T.
    da Silva, Alberico B. F.
    JOURNAL OF MOLECULAR MODELING, 2006, 12 (06) : 915 - 920
  • [24] Classification of stilbenoid compounds by entropy of artificial intelligence
    Castellano, Gloria
    Lara, Ana
    Torrens, Francisco
    PHYTOCHEMISTRY, 2014, 97 : 62 - 69
  • [25] Entropy, Carnot Cycle, and Information Theory
    Martinelli, Mario
    ENTROPY, 2019, 21 (01)
  • [26] Negative entropy in quantum information theory
    Cerf, NJ
    Adami, C
    NEW DEVELOPMENTS ON FUNDAMENTAL PROBLEMS IN QUANTUM PHYSICS, 1997, 81 : 77 - 84
  • [27] Entropy and Information Theory: Uses and Misuses
    Ben-Naim, Arieh
    ENTROPY, 2019, 21 (12)
  • [29] Information Theory for Biological Sequence Classification: A Novel Feature Extraction Technique Based on Tsallis Entropy
    Bonidia, Robson P.
    Avila Santos, Anderson P.
    de Almeida, Breno L. S.
    Stadler, Peter F.
    da Rocha, Ulisses Nunes
    Sanches, Danilo S.
    de Carvalho, Andre C. P. L. F.
    ENTROPY, 2022, 24 (10)
  • [30] Entropy and Clustering Information Applied to sEMG Classification
    Barbosa, Luiz J. L.
    Nogueira, Otavio
    Silva, Vinicius O.
    Cotta, Paulo V. P.
    de Souza, Fernando V. G.
    de Araujo, Michael D. C.
    Inazawa, Pedro H. G.
    Lopez-Delis, Alberto
    da Rocha, Adson F.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 678 - 681