Classification of stilbenoid compounds by entropy of artificial intelligence

被引:11
|
作者
Castellano, Gloria [1 ]
Lara, Ana [1 ]
Torrens, Francisco [2 ]
机构
[1] Univ Catolica Valencia San Vicente Martir, E-46001 Valencia, Spain
[2] Univ Valencia, Inst Univ Ciencia Mol, E-46071 Valencia, Spain
关键词
Antioxidant activity; Information entropy; Molecular classification; Polycyclic compound; Stilbenoid; ANTIOXIDANT ACTIVITY; RESVERATROL; BIOSYNTHESIS;
D O I
10.1016/j.phytochem.2013.10.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A set of 66 stilbenoid compounds is classified into a system of periodic properties by using a procedure based on artificial intelligence, information entropy theory. Eight characteristics in hierarchical order are used to classify structurally the stilbenoids. The former five features mark the group or column while the latter three are used to indicate the row or period in the table of periodic classification. Those stilbenoids in the same group are suggested to present similar properties. Furthermore, compounds also in the same period will show maximum resemblance. In this report, the stilbenoids in the table are related to experimental data of bioactivity and antioxidant properties available in the technical literature. It should be noted that stilbenoids with glycoxyl groups esterified with benzoic acid derivatives, in the group g11000 in the extreme right of the periodic table, show the greatest antioxidant activity as confirmed by experiments in the bibliography. Moreover, the second group from the right (g10111) contains Epiceatannol, which antioxidant activity is recognized in the literature. The experiments confirm our results of the periodic classification. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:62 / 69
页数:8
相关论文
共 50 条
  • [1] Entropy of Artificial Intelligence
    Biro, Tamas Sandor
    Jakovac, Antal
    UNIVERSE, 2022, 8 (01)
  • [2] Entropy and monotonicity in artificial intelligence
    Bouchon-Meunier, Bernadette
    Marsala, Christophe
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 124 : 111 - 122
  • [3] Lung sounds classification with artificial intelligence
    Sourour, A.
    Karray, M. M.
    Gargouri, R.
    Ben Salah, I.
    Feki, W.
    Triki, Z.
    Bahloul, N.
    Kallel, N.
    Khemakhem, R.
    Moussa, N.
    Hentati, A.
    Kammoun, S.
    EUROPEAN RESPIRATORY JOURNAL, 2022, 60
  • [4] PHOTOCHEMISTRY OF STILBENOID COMPOUNDS IN LC PHASES
    MEIER, H
    LIFKA, T
    MULLER, K
    JOURNAL OF INFORMATION RECORDING MATERIALS, 1994, 21 (5-6): : 457 - 460
  • [5] Generative Artificial Intelligence, Semantic Entropy, and the Big Sort
    Berghel, Hal
    COMPUTER, 2024, 57 (01) : 130 - 135
  • [6] Artificial intelligence for heart sound classification: A review
    Chen, Junxin
    Guo, Zhihuan
    Xu, Xu
    Jeon, Gwanggil
    Camacho, David
    EXPERT SYSTEMS, 2024, 41 (04)
  • [7] Border Trespasser Classification Using Artificial Intelligence
    Othmani, Mohsen
    Jeridi, Mohamed Hechmi
    Wang, Qing-Guo
    Ezzedine, Tahar
    IEEE ACCESS, 2021, 9 : 72284 - 72298
  • [8] Artificial intelligence capabilities classification in business environment
    Vinogradova, A., I
    Fomina, Yu, V
    Gorodischeva, A. N.
    Astapenko, E., V
    Bedareva, A., V
    INTERNATIONAL SCIENTIFIC CONFERENCE ON APPLIED PHYSICS, INFORMATION TECHNOLOGIES AND ENGINEERING (APITECH-2019), 2019, 1399
  • [9] Application of Artificial Intelligence in Diagnosis and Classification of Anemia
    Kovacevic, Andela
    Lakota, Azemina
    Kuka, Lamija
    Becic, Ervina
    Smajovic, Alisa
    Pokvic, Lejla Gurbeta
    2022 11TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2022, : 553 - 556
  • [10] Wear Mechanism Classification Using Artificial Intelligence
    Sieberg, Philipp Maximilian
    Kurtulan, Dzhem
    Hanke, Stefanie
    MATERIALS, 2022, 15 (07)