Direct Estimation of Neurotransmitter Activation Parameters in Dynamic PET Using Regression Neural Networks

被引:0
|
作者
Hu, Yifan [1 ]
Angelis, Georgios I. [5 ]
Kench, Peter L. [2 ,3 ]
Fuller, Oliver K. [2 ,3 ]
Liu, Yaqiang [4 ]
Ma, Tianyu [4 ]
Meikle, Steven R. [2 ,3 ]
机构
[1] Tsinghua Univ, Dept Engn Phys, Med Phys Lab, Key Lab Particle & Radiat Imaging,Minist Educ, Beijing 100084, Peoples R China
[2] Univ Sydney, Brain & Mind Ctr, Sydney, NSW, Australia
[3] Univ Sydney, Fac Hlth Sci, Sydney, NSW, Australia
[4] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China
[5] Royal North Shore Hosp, Northern Sydney Canc Ctr, Radiat Oncol, Sydney, NSW, Australia
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1109/nss/mic42101.2019.9060010
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Current pharmacokinetic models, such as the linear parametric neurotransmitter PET (lp-ntPET) model have been developed to detect and quantify transient changes in receptor occupancy caused by variations in the concentration of endogenous neurotransmitters. However, it often performs poorly when applied at the voxel level due to high statistical noise. In this paper, we propose a new method to detect transient changes in neurotransmitter concentration in dynamic PET data using deep learning. Activation onset time and response magnitude of neurotransmitter were directly estimated using a convolution neural network (CNN) and compared to the lp-ntPET model. Computer simulations, as well as realistic GATE simulations were used to generate dynamic PET data, representing a [C-11]raclopride study, with a known range of activation onset times and response magnitudes, across a wide range of noise levels. Results showed that the proposed neural network had better quantitative performance in estimating activation onset time and response magnitude than the conventional lp-ntPET method, especially where noise is high.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Estimation of Coal's Sorption Parameters Using Artificial Neural Networks
    Skiba, Marta
    Mlynarczuk, Mariusz
    MATERIALS, 2020, 13 (23) : 1 - 11
  • [32] Estimation of tumor parameters using neural networks for inverse bioheat problem
    Majdoubi, Jihen
    Iyer, Adithya S.
    Ashique, Adil M.
    Perumal, D. Arumuga
    Mahrous, Y. M.
    Rahimi-Gorji, Mohammad
    Issakhov, Alibek
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 205
  • [33] Estimation of CNC Grinding Process Parameters Using Different Neural Networks
    Saric, Tomislav
    Simunovic, Goran
    Vukelic, Dorde
    Simunovic, Katica
    Lujic, Roberto
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (06): : 1770 - 1775
  • [34] Estimation of aircraft lateral-directional parameters using neural networks
    Ghosh, AK
    Raisinghani, SC
    Khubchandani, S
    JOURNAL OF AIRCRAFT, 1998, 35 (06): : 876 - 881
  • [35] Li-ion battery parameters estimation using neural networks
    Boujoudar, Youness
    Hemi, Hanane
    El Moussaoui, Hassan
    El Markhi, Hassane
    Lamhamdi, Tijani
    2017 INTERNATIONAL CONFERENCE ON WIRELESS TECHNOLOGIES, EMBEDDED AND INTELLIGENT SYSTEMS (WITS), 2017,
  • [36] A linear model for estimation of neurotransmitter response profiles from dynamic PET data
    Normandin, Marc D.
    Schiffer, Wynne K.
    Morris, Evan D.
    NEUROIMAGE, 2012, 59 (03) : 2689 - 2699
  • [37] Position estimation using neural networks in semi-monolithic PET detectors
    Freire, M.
    Barrio, J.
    Cucarella, N.
    Valladares, C.
    Gonzalez-Montoro, A.
    de Alfonso, C.
    Benlloch, J. M.
    Gonzalez, A. J.
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (24):
  • [38] High-precision position estimation in PET using artificial neural networks
    Mateo, F.
    Aliaga, R. J.
    Ferrando, N.
    Martinez, J. D.
    Herrero, V.
    Lerche, Ch. W.
    Colom, R. J.
    Monzo, J. M.
    Sebastia, A.
    Gadea, R.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 604 (1-2): : 366 - 369
  • [39] Direct estimation of dynamic parameters in SPECT tomography
    Univ of Calgary, Calgary, Canada
    IEEE Trans Nucl Sci, 6 pt 2 (2425-2430):
  • [40] Direct estimation of dynamic parameters in SPECT tomography
    Hebber, E
    Oldenburg, D
    Farnocombe, T
    Celler, A
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1997, 44 (06) : 2425 - 2430