2D Dumbbell Silicene as a High Storage Capacity and Fast Ion Diffusion Anode for Li-Ion Batteries

被引:30
|
作者
Vargas, Douglas D. [1 ]
Cardoso, Gunther Luft [1 ]
Piquini, Paulo Cesar [1 ]
Ahuja, Rajeev [2 ]
Baierle, Rogerio J. [1 ]
机构
[1] Univ Fed Santa Maria, Phys Dept, BR-97105900 Santa Maria, Brazil
[2] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
关键词
dumbbell silicene; stable allotrope; 2D materials; DFT; Li-ion battery; fast diffusion; high capacity; TOTAL-ENERGY CALCULATIONS; LITHIUM-ION; ADSORPTION; PREDICTION; MONOLAYER; NANOWIRES; NA;
D O I
10.1021/acsami.2c13535
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
First-principles calculations within DFT have been performed to investigate the use of a recently synthesized form of silicene, the dumbbell (DB) silicene as an anode material for Li-ion batteries (LiBs). The energetically most stable geometries for Li adsorption on DB silicene were investigated, and the energy barriers for Li-ion diffusion among the possible stable adsorption sites were calculated. We found that DB silicene can be lithiated up to a ratio of 1.05 Li per Si atom, resulting in a high storage capacity of 1002 mA h g-1 and an average open-circuit potential of 0.38 V, which makes DB silicene suitable for applications as an anode in LiBs. The energy barrier for Li-ion diffusion was calculated to be as low as 0.19 eV, suggesting that the Li ions can easily diffuse on the entire DB silicene surface, decreasing the time for the charge/ discharge process of the LiBs. Our detailed investigations show that the most stable form of two-dimensional silicon has characteristic features suitable for application in high-performance LiBs.
引用
收藏
页码:47262 / 47271
页数:10
相关论文
共 50 条
  • [31] Stabilization of Silicon Anode for Li-Ion Batteries
    Xiao, Jie
    Xu, Wu
    Wang, Deyu
    Choi, Daiwon
    Wang, Wei
    Li, Xiaolin
    Graff, Gordon L.
    Liu, Jun
    Zhang, Ji-Guang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) : A1047 - A1051
  • [32] Silicon as anode material for Li-ion batteries
    Ozanam, Francois
    Rosso, Michel
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 213 : 2 - 11
  • [33] Nanostructured anode materials for Li-ion batteries
    Zhao, Nahong
    Fu, Lijun
    Yang, Lichun
    Zhang, Tao
    Wang, Gaojun
    Wu, Yuping
    van Ree, Teunis
    PURE AND APPLIED CHEMISTRY, 2008, 80 (11) : 2283 - 2295
  • [34] Composite anode materials for Li-ion batteries
    Wen, Zhaoyin
    Yang, Xuefin
    Huang, Shahua
    JOURNAL OF POWER SOURCES, 2007, 174 (02) : 1041 - 1045
  • [35] Nanocomposite anode materials for Li-ion batteries
    Wada, M
    Yin, J
    Tanabe, E
    Kitano, Y
    Tanase, S
    Kajita, O
    Sakai, T
    ELECTROCHEMISTRY, 2003, 71 (12) : 1064 - 1066
  • [36] 2D material integrated macroporous electrodes for Li-ion batteries
    Gullapalli, Hemtej
    Kalaga, Kaushik
    Vinod, Soumya
    Rodrigues, Marco-Tulio F.
    George, Antony
    Ajayan, Pulickel M.
    RSC ADVANCES, 2017, 7 (52): : 32737 - 32742
  • [37] NbSb2 as an anode material for Li-ion batteries
    Reddy, M. Anji
    Varadaraju, U. V.
    JOURNAL OF POWER SOURCES, 2006, 159 (01) : 336 - 339
  • [38] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
    胡军平
    王章寅
    张根瑞
    刘宇
    刘宁
    李未
    李健文
    欧阳楚英
    杨声远
    Chinese Physics B, 2021, (04) : 466 - 472
  • [39] Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries
    Shao, Dan
    Tang, Daoping
    Mai, Yongjin
    Zhang, Lingzhi
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (47) : 15068 - 15075
  • [40] A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries
    Guo, Hong
    Zhao, Hailei
    Yin, Chaoli
    Qiu, Weihua
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 131 (1-3): : 173 - 176