2D Dumbbell Silicene as a High Storage Capacity and Fast Ion Diffusion Anode for Li-Ion Batteries

被引:30
|
作者
Vargas, Douglas D. [1 ]
Cardoso, Gunther Luft [1 ]
Piquini, Paulo Cesar [1 ]
Ahuja, Rajeev [2 ]
Baierle, Rogerio J. [1 ]
机构
[1] Univ Fed Santa Maria, Phys Dept, BR-97105900 Santa Maria, Brazil
[2] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
关键词
dumbbell silicene; stable allotrope; 2D materials; DFT; Li-ion battery; fast diffusion; high capacity; TOTAL-ENERGY CALCULATIONS; LITHIUM-ION; ADSORPTION; PREDICTION; MONOLAYER; NANOWIRES; NA;
D O I
10.1021/acsami.2c13535
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
First-principles calculations within DFT have been performed to investigate the use of a recently synthesized form of silicene, the dumbbell (DB) silicene as an anode material for Li-ion batteries (LiBs). The energetically most stable geometries for Li adsorption on DB silicene were investigated, and the energy barriers for Li-ion diffusion among the possible stable adsorption sites were calculated. We found that DB silicene can be lithiated up to a ratio of 1.05 Li per Si atom, resulting in a high storage capacity of 1002 mA h g-1 and an average open-circuit potential of 0.38 V, which makes DB silicene suitable for applications as an anode in LiBs. The energy barrier for Li-ion diffusion was calculated to be as low as 0.19 eV, suggesting that the Li ions can easily diffuse on the entire DB silicene surface, decreasing the time for the charge/ discharge process of the LiBs. Our detailed investigations show that the most stable form of two-dimensional silicon has characteristic features suitable for application in high-performance LiBs.
引用
收藏
页码:47262 / 47271
页数:10
相关论文
共 50 条
  • [21] Testing The Performance Of High Capacity Li-Ion Batteries
    Davolio, G.
    Giovanardi, R.
    Lanciotti, C.
    BATTERIES AND ENERGY TECHNOLOGY (GENERAL)- 219TH ECS MEETING, 2011, 35 (32): : 275 - 280
  • [22] Electrodeposition and capacity measurements of intermetallic anode materials for Li-ion batteries
    Jackson, Everett
    Prieto, Amy L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [23] Reactive diffusion of lithium in silicon in anode materials for Li-ion batteries
    Li, Bin
    Goldman, Alexander
    Xu, Jun
    MATERIALIA, 2023, 29
  • [24] Ultrafast anode for high voltage aqueous Li-ion batteries
    Levi, M. D.
    Shilina, Yu.
    Salitra, G.
    Aurbach, D.
    Guyot, E.
    Seghir, S.
    Lecuire, J. M.
    Boulanger, C.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (11) : 3443 - 3448
  • [25] Modified SiO as a high performance anode for Li-ion batteries
    Hwa, Yoon
    Park, Cheol-Min
    Sohn, Hun-Joon
    JOURNAL OF POWER SOURCES, 2013, 222 : 129 - 134
  • [26] Capacity Estimation for Li-ion Batteries
    Tang, Xidong
    Mao, Xiaofeng
    Lin, Jian
    Koch, Brian
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 947 - 952
  • [27] Ultrafast anode for high voltage aqueous Li-ion batteries
    M. D. Levi
    Yu. Shilina
    G. Salitra
    D. Aurbach
    E. Guyot
    S. Seghir
    J. M. Lecuire
    C. Boulanger
    Journal of Solid State Electrochemistry, 2012, 16 : 3443 - 3448
  • [28] Pseudocapacitive charge storage induced by self-enhanced electrical conductivity and Li-ion diffusion in high performance Li3VO4@LiVO2 anode for Li-ion batteries
    Kang, Tao
    Shen, Dongyang
    Ni, Shibing
    Chen, Qichang
    Li, Tao
    Yang, Xuelin
    Zhao, Jinbao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 741 : 442 - 448
  • [29] Preferentially Oriented TiO2 Nanotubes as Anode Material for Li-Ion Batteries: Insight into Li-Ion Storage and Lithiation Kinetics
    Auer, Andrea
    Portenkirchner, Engelbert
    Goetsch, Thomas
    Valero-Vidal, Carlos
    Penner, Simon
    Kunze-Liebhaeuser, Julia
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (42) : 36828 - 36836
  • [30] A record-high ion storage capacity of T-graphene as two-dimensional anode material for Li-ion and Na-ion batteries
    Zhang, Xiaoming
    Jin, Lei
    Dai, Xuefang
    Chen, Guifeng
    Liu, Guodong
    APPLIED SURFACE SCIENCE, 2020, 527