Finite groups with hall Schmidt subgroups

被引:8
|
作者
Kniahina, V. N. [1 ]
Monakhov, V. S. [2 ]
机构
[1] Gomel Engn Inst, Gomel 246035, BELARUS
[2] Gomel F Scorina State Univ, Dept Math, Gomel 246019, BELARUS
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2012年 / 81卷 / 3-4期
关键词
Hall subgroup; Schmidt subgroup; non-nilpotent group;
D O I
10.5486/PMD.2012.5205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Schmidt group is a non-nilpotent group whose every proper subgroup is nilpotent. We study the properties of a non-nilpotent group G in which every Schmidt subgroup is a Hall subgroup of G.
引用
收藏
页码:341 / 350
页数:10
相关论文
共 50 条
  • [31] FINITE GROUPS WITH s-ABNORMAL SCHMIDT SUBGROUPS
    Li, H.
    Wang, Zh.
    Safonova, I. N.
    Skiba, A. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (03) : 629 - 638
  • [32] Finite groups with semi-subnormal Schmidt subgroups
    Kniahina, V. N.
    Monakhov, V. S.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (01): : 66 - 73
  • [33] Finite Groups with a System of Generalized Subnormal Schmidt Subgroups
    Yi, X.
    Li, M.
    Kamornikov, S. F.
    SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (01) : 76 - 82
  • [34] On the Intersections of Solvable Hall Subgroups in Finite Groups
    Vdovin, E. P.
    Zenkov, V. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 267 : S234 - S243
  • [35] Pronormality of Hall subgroups in finite simple groups
    E. P. Vdovin
    D. O. Revin
    Siberian Mathematical Journal, 2012, 53 (3) : 419 - 430
  • [36] On the intersections of solvable Hall subgroups in finite groups
    Vdovin, E. P.
    Zenkov, V. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (02): : 74 - 83
  • [37] On the intersections of solvable Hall subgroups in finite groups
    E. P. Vdovin
    V. I. Zenkov
    Proceedings of the Steklov Institute of Mathematics, 2009, 267 (Suppl 1) : 234 - 243
  • [38] HALL SUBGROUPS OF CERTAIN FAMILIES OF FINITE GROUPS
    SPITZNAG.EL
    MATHEMATISCHE ZEITSCHRIFT, 1967, 97 (04) : 259 - &
  • [39] NORMAL HALL SUBGROUPS OF FINITE-GROUPS
    ASAAD, M
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1983, 14 (12): : 1531 - 1533
  • [40] A CONJUGACY CRITERION FOR HALL SUBGROUPS IN FINITE GROUPS
    Vdovin, E. P.
    Revin, D. O.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (03) : 402 - 409