Finite groups with hall Schmidt subgroups

被引:8
|
作者
Kniahina, V. N. [1 ]
Monakhov, V. S. [2 ]
机构
[1] Gomel Engn Inst, Gomel 246035, BELARUS
[2] Gomel F Scorina State Univ, Dept Math, Gomel 246019, BELARUS
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2012年 / 81卷 / 3-4期
关键词
Hall subgroup; Schmidt subgroup; non-nilpotent group;
D O I
10.5486/PMD.2012.5205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Schmidt group is a non-nilpotent group whose every proper subgroup is nilpotent. We study the properties of a non-nilpotent group G in which every Schmidt subgroup is a Hall subgroup of G.
引用
收藏
页码:341 / 350
页数:10
相关论文
共 50 条
  • [11] Finite groups with subnormal Schmidt subgroups
    Vedernikov, V. A.
    ALGEBRA AND LOGIC, 2007, 46 (06) : 363 - 372
  • [12] Finite groups with seminormal Schmidt subgroups
    Knyagina, V. N.
    Monakhov, V. S.
    ALGEBRA AND LOGIC, 2007, 46 (04) : 244 - 249
  • [13] On finite groups with σ-subnormal Schmidt subgroups
    Al-Sharo, Khaled A.
    Skiba, Alexander N.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) : 4158 - 4165
  • [14] Hall subgroups of finite groups
    Revin, Danila Olegovitch
    Vdovin, Evgenii Petrovitch
    ISCHIA GROUP THEORY 2004, PROCEEDINGS, 2006, 402 : 229 - +
  • [15] Finite groups with Hall π-subgroups
    Vedernikov, V. A.
    SBORNIK MATHEMATICS, 2012, 203 (03) : 326 - 350
  • [16] Finite Groups with Generalized Subnormal Schmidt Subgroups
    F. Sun
    X. Yi
    S. F. Kamornikov
    Siberian Mathematical Journal, 2021, 62 : 364 - 369
  • [17] Finite groups with a given set of Schmidt subgroups
    Monakhov, VS
    MATHEMATICAL NOTES, 1995, 58 (5-6) : 1183 - 1186
  • [18] FINITE GROUPS WITH GENERALIZED SUBNORMAL SCHMIDT SUBGROUPS
    Sun, F.
    Yi, X.
    Kamornikov, S. F.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (02) : 364 - 369
  • [19] On finite groups with generalized σ-subnormal Schmidt subgroups
    Hu, Bin
    Huang, Jianhong
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (07) : 3127 - 3134
  • [20] On Existence of Hall Subgroups in Finite Groups
    Liu, Yufeng
    Gno, Wenbin
    Skiba, A. N.
    ALGEBRA COLLOQUIUM, 2017, 24 (01) : 75 - 82