Soil organic carbon prediction using visible-near infrared reflectance spectroscopy employing artificial neural network modelling

被引:4
|
作者
George, Justin K. [1 ]
Kumar, Suresh [1 ]
Raj, R. Arya [1 ]
机构
[1] Indian Inst Remote Sensing ISRO, Agr & Soils Dept, 4 Kalidas Rd, Dehra Dun 248001, Uttarakhand, India
来源
CURRENT SCIENCE | 2020年 / 119卷 / 02期
关键词
Artificial neural network model; reflectance spectroscopy; soil organic carbon; visible and near infrared region; MATTER; NITROGEN;
D O I
10.18520/cs/v119/i2/377-381
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Visible-near infrared (VNIR) spectroscopy is a relatively fast and cost-effective analytical technique for estimating soil organic carbon (SOC). The present study was undertaken for predicting SOC using VNIR reflectance spectroscopy employing artificial neural network (ANN). Surface soil samples (0-15 cm) were collected from 75 georeferenced locations through grid sampling approach in a hilly watershed of Himachal Pradesh, India, and analysed for SOC. The reflectance spectra of soil samples was measured using a spectroradiometer in the wavelength range of 350-2500 nm. Various spectral indices were generated using the sensitive bands in the visible region. The SOC-sensitive spectral indices and reflectance transformations were utilized for predictive modelling of SOC using the ANN model. This model could predict SOC values with R-2 of 0.92 and MSE value of 0.24, indicating that this technique can be used to predict SOC in a spatial domain when coupled with high-resolution hyperspectral satellite/airborne data.
引用
收藏
页码:377 / 381
页数:6
相关论文
共 50 条
  • [41] Laboratory Spectroscopy Assessments of Rainfed Paddy Soil Samples on Visible and Near-Infrared Spectroscopy Reflectance for Estimating Soil Organic Carbon
    Homhuan, Sakda
    Pansak, Wanwisa
    Lawawirojwong, Siam
    Narongrit, Chada
    AIR SOIL AND WATER RESEARCH, 2016, 9 : 77 - 85
  • [42] Simulated in situ characterization of soil organic and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy
    Morgan, Cristine L. S.
    Waiser, Travis H.
    Brown, David J.
    Hallmark, C. Tom
    GEODERMA, 2009, 151 (3-4) : 249 - 256
  • [43] Prediction of Soil Organic Carbon in Different Soil Fractions of Black Soils in Northeast China Using Near-Infrared Reflectance Spectroscopy
    Fan Ru-qin
    Yang Xue-ming
    Zhang Xiao-ping
    Shen Yan
    Liang Ai-zhen
    Shi Xiu-huan
    Wei Shou-cai
    Chen Xue-wen
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32 (02) : 349 - 353
  • [44] Prediction of soil organic carbon in soil profiles based on visible-near-infrared hyperspectral imaging spectroscopy
    Liu, Shuyu
    Chen, Jiaying
    Guo, Long
    Wang, Junguang
    Zhou, Zefan
    Luo, Jingyi
    Yang, Ruiqing
    SOIL & TILLAGE RESEARCH, 2023, 232
  • [45] Rapid compositional analysis of Atlantic salmon (Salmo salar) using visible-near infrared reflectance spectroscopy
    Brown, Malcolm R.
    Kube, Peter D.
    Taylor, Richard S.
    Elliott, Nick G.
    AQUACULTURE RESEARCH, 2014, 45 (05) : 798 - 811
  • [46] Paddy soil nutrient assessment using visible and near infrared reflectance spectroscopy
    Gholizadeh, A.
    Saberioon, M. M.
    Amin, M. S. M.
    PIAGENG 2013: IMAGE PROCESSING AND PHOTONICS FOR AGRICULTURAL ENGINEERING, 2013, 8761
  • [47] Prediction of pork quality using visible/near-infrared reflectance spectroscopy
    Savenije, B
    Geesink, GH
    van der Palen, JGP
    Hemke, G
    MEAT SCIENCE, 2006, 73 (01) : 181 - 184
  • [48] Duroc and Iberian pork neural network classification by visible and near infrared reflectance spectroscopy
    del Moral, F. G.
    Guillen, A.
    del Moral, L. G.
    O'Valle, F.
    Martinez, L.
    del Moral, R. G.
    JOURNAL OF FOOD ENGINEERING, 2009, 90 (04) : 540 - 547
  • [49] Test of content of nitrogen and phosphorus in soil based on artificial neural network and near-infrared reflectance spectroscopy
    Yan Lingfei
    Cong Yuliang
    Zhang Shuhui
    Li Wei
    Proceedings of the First International Symposium on Test Automation & Instrumentation, Vols 1 - 3, 2006, : 1588 - 1590
  • [50] Improving the prediction of soil organic matter using visible and near infrared spectroscopy of moist samples
    Wang, Changkun
    Pan, Xianzhang
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2016, 24 (03) : 231 - 241