Soil organic carbon prediction using visible-near infrared reflectance spectroscopy employing artificial neural network modelling

被引:4
|
作者
George, Justin K. [1 ]
Kumar, Suresh [1 ]
Raj, R. Arya [1 ]
机构
[1] Indian Inst Remote Sensing ISRO, Agr & Soils Dept, 4 Kalidas Rd, Dehra Dun 248001, Uttarakhand, India
来源
CURRENT SCIENCE | 2020年 / 119卷 / 02期
关键词
Artificial neural network model; reflectance spectroscopy; soil organic carbon; visible and near infrared region; MATTER; NITROGEN;
D O I
10.18520/cs/v119/i2/377-381
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Visible-near infrared (VNIR) spectroscopy is a relatively fast and cost-effective analytical technique for estimating soil organic carbon (SOC). The present study was undertaken for predicting SOC using VNIR reflectance spectroscopy employing artificial neural network (ANN). Surface soil samples (0-15 cm) were collected from 75 georeferenced locations through grid sampling approach in a hilly watershed of Himachal Pradesh, India, and analysed for SOC. The reflectance spectra of soil samples was measured using a spectroradiometer in the wavelength range of 350-2500 nm. Various spectral indices were generated using the sensitive bands in the visible region. The SOC-sensitive spectral indices and reflectance transformations were utilized for predictive modelling of SOC using the ANN model. This model could predict SOC values with R-2 of 0.92 and MSE value of 0.24, indicating that this technique can be used to predict SOC in a spatial domain when coupled with high-resolution hyperspectral satellite/airborne data.
引用
收藏
页码:377 / 381
页数:6
相关论文
共 50 条
  • [21] Prediction of Soil Properties by Visible and Near-Infrared Reflectance Spectroscopy
    E. Shahrayini
    A. A. Noroozi
    M. Karimian Eghbal
    Eurasian Soil Science, 2020, 53 : 1760 - 1772
  • [22] COMPARING THE ARTIFICIAL NEURAL NETWORK WITH PARCIAL LEAST SQUARES FOR PREDICTION OF SOIL ORGANIC CARBON AND pH AT DIFFERENT MOISTURE CONTENT LEVELS USING VISIBLE AND NEAR-INFRARED SPECTROSCOPY
    Tekin, Yucel
    Tumsavas, Zeynal
    Mouazen, Abdul Mounem
    REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2014, 38 (06): : 1794 - 1804
  • [23] Rapid Prediction of Total Organic Carbon Content and CEC in Soil Using Visible/Near Infrared Spectroscopy
    Fang Li-min
    Feng Ai-ming
    Lin Min
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30 (02) : 327 - 330
  • [24] Visible-near infrared spectroscopy to assess soil contaminated with cobalt
    Miranda Salazar, D.
    Martinez Reyes, H. L.
    Martinez-Rosas, M. E.
    Miranda Velasco, M. M.
    Arroyo Ortega, E.
    INTERNATIONAL MEETING OF ELECTRICAL ENGINEERING RESEARCH 2012, 2012, 35 : 245 - 253
  • [25] Rapid prediction of soil available sulphur using visible near-infrared reflectance spectroscopy
    Mondal, Bhabani Prasad
    Sahoo, Rabi Narayan
    Ahmed, Nayan
    Singh, Rajiv Kumar
    Das, Bappa
    Mridha, Nilimesh
    Gakhar, Shalini
    INDIAN JOURNAL OF AGRICULTURAL SCIENCES, 2021, 91 (09): : 1328 - 1332
  • [26] Prediction of total carbon, total nitrogen, and pH of organic materials using visible near-infrared reflectance spectroscopy
    Luce, Mervin St.
    Ziadi, Noura
    Gagnon, Bernard
    Levesque, Vicky
    CANADIAN JOURNAL OF SOIL SCIENCE, 2018, 98 (01) : 175 - 179
  • [27] Soil organic carbon and its fractions estimated by visible-near infrared transfer functions
    Rossel, R. A. Viscarra
    Hicks, W. S.
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2015, 66 (03) : 438 - 450
  • [28] On-site variety discrimination of tomato plant using visible-near infrared reflectance spectroscopy
    Hui-rong Xu
    Peng Yu
    Xia-ping Fu
    Yi-bin Ying
    Journal of Zhejiang University SCIENCE B, 2009, 10 : 126 - 132
  • [29] On-site variety discrimination of tomato plant using visible-near infrared reflectance spectroscopy
    Huirong XU Peng YU Xiaping FU Yibin YING College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
    Journal of Zhejiang University(Science B:An International Biomedicine & Biotechnology Journal), 2009, (02) : 126 - 132
  • [30] On-site variety discrimination of tomato plant using visible-near infrared reflectance spectroscopy
    Xu, Hui-rong
    Yu, Peng
    Fu, Xia-ping
    Ying, Yi-bin
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2009, 10 (02): : 126 - 132