Soil organic carbon prediction using visible-near infrared reflectance spectroscopy employing artificial neural network modelling

被引:4
|
作者
George, Justin K. [1 ]
Kumar, Suresh [1 ]
Raj, R. Arya [1 ]
机构
[1] Indian Inst Remote Sensing ISRO, Agr & Soils Dept, 4 Kalidas Rd, Dehra Dun 248001, Uttarakhand, India
来源
CURRENT SCIENCE | 2020年 / 119卷 / 02期
关键词
Artificial neural network model; reflectance spectroscopy; soil organic carbon; visible and near infrared region; MATTER; NITROGEN;
D O I
10.18520/cs/v119/i2/377-381
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Visible-near infrared (VNIR) spectroscopy is a relatively fast and cost-effective analytical technique for estimating soil organic carbon (SOC). The present study was undertaken for predicting SOC using VNIR reflectance spectroscopy employing artificial neural network (ANN). Surface soil samples (0-15 cm) were collected from 75 georeferenced locations through grid sampling approach in a hilly watershed of Himachal Pradesh, India, and analysed for SOC. The reflectance spectra of soil samples was measured using a spectroradiometer in the wavelength range of 350-2500 nm. Various spectral indices were generated using the sensitive bands in the visible region. The SOC-sensitive spectral indices and reflectance transformations were utilized for predictive modelling of SOC using the ANN model. This model could predict SOC values with R-2 of 0.92 and MSE value of 0.24, indicating that this technique can be used to predict SOC in a spatial domain when coupled with high-resolution hyperspectral satellite/airborne data.
引用
收藏
页码:377 / 381
页数:6
相关论文
共 50 条
  • [1] Soil profile organic carbon prediction with visible-near infrared reflectance spectroscopy based on a national database
    Deng, F.
    Knadel, M.
    Peng, Y.
    Heckrath, G.
    Greve, M. H.
    Minasny, B.
    DIGITAL SOIL ASSESSMENTS AND BEYOND, 2012, : 409 - 413
  • [2] Organic matter prediction for Korean soils using visible-near infrared reflectance spectroscopy
    Chun, H. C.
    Hong, S. Y.
    Song, K. C.
    Kim, Y. H.
    Hyun, B. K.
    Minasny, B.
    DIGITAL SOIL ASSESSMENTS AND BEYOND, 2012, : 377 - 380
  • [3] Prediction of soil organic carbon with different parent materials development using visible-near infrared spectroscopy
    Liu, Jinbao
    Han, Jichang
    Zhang, Yang
    Wang, Huanyuan
    Kong, Hui
    Shi, Lei
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2018, 204 : 33 - 39
  • [4] Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy
    Stevens, Antoine
    Nocita, Marco
    Toth, Gergely
    Montanarella, Luca
    van Wesemael, Bas
    PLOS ONE, 2013, 8 (06):
  • [5] Prediction of soil organic carbon stock using visible and near infrared reflectance spectroscopy (VNIRS) in the field
    Cambou, Aurelie
    Cardinael, Remi
    Kouakoua, Ernest
    Villeneuve, Manon
    Durand, Celine
    Barthes, Bernard G.
    GEODERMA, 2016, 261 : 151 - 159
  • [6] Soil organic carbon predictions in Subarctic Greenland by visible-near infrared spectroscopy
    Ogric, M.
    Knadel, M.
    Kristiansen, S. M.
    Peng, Y.
    De Jonge, L. W.
    Adhikari, K.
    Greve, M. H.
    ARCTIC ANTARCTIC AND ALPINE RESEARCH, 2019, 51 (01) : 490 - 505
  • [7] Multiple-depth modeling of soil organic carbon using visible-near infrared spectroscopy
    Shahrayini, Elham
    Shafizadeh-Moghadam, Hossein
    Noroozi, Ali Akbar
    Eghbal, Mostafa Karimian
    GEOCARTO INTERNATIONAL, 2022, 37 (05) : 1393 - 1407
  • [8] A comparison of point and imaging visible-near infrared spectroscopy for determining soil organic carbon
    Askari, Mohammad Sadegh
    O'Rourke, Sharon M.
    Holden, Nicholas M.
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2018, 26 (02) : 133 - 146
  • [9] Prediction of Organic Carbon Content of Intertidal Sediments Based on Visible-Near Infrared Spectroscopy
    Lu Mei-rong
    Ren Guo-xing
    Li Xue-ying
    Fan Ping-ping
    Sun Zhong-liang
    Hou Guang-li
    Liu Yan
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40 (04) : 1082 - 1086
  • [10] Using Short Wave Visible-Near Infrared Reflectance Spectroscopy to Predict Soil Properties and Content
    Liu Xuemei
    Liu Jianshe
    SPECTROSCOPY LETTERS, 2014, 47 (10) : 729 - 739