Nonlinear resonant behavior of a dispersive readout circuit for a superconducting flux qubit

被引:20
|
作者
Lee, Janice C.
Oliver, William D.
Berggren, Karl K.
Orlando, T. P.
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Lincoln Lab, Lexington, MA 02420 USA
来源
PHYSICAL REVIEW B | 2007年 / 75卷 / 14期
关键词
D O I
10.1103/PhysRevB.75.144505
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A nonlinear resonant circuit comprising a SQUID magnetometer and a shunting capacitor is studied as a readout scheme for a persistent-current qubit. The flux state of the qubit is detected as a change in the Josephson inductance of the SQUID magnetometer, which in turn mediates a shift in the resonant frequency of the readout circuit. The nonlinearity and resulting hysteresis in the resonant behavior are characterized as a function of the power of both the input drive and the associated resonance-peak response. Numerical simulations based on a nonlinear circuit model shows that the observed nonlinearity is dominated by the effect due to an ac flux rather than current bias through the Josephson inductor.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Single-shot readout of a superconducting flux qubit with a flux-driven Josephson parametric amplifier
    Lin, Z. R.
    Inomata, K.
    Oliver, W. D.
    Koshino, K.
    Nakamura, Y.
    Tsai, J. S.
    Yamamoto, T.
    APPLIED PHYSICS LETTERS, 2013, 103 (13)
  • [22] Superconducting non-linear resonator for non-destructive readout of a flux qubit
    Inomata, K.
    Watanabe, M.
    Yamamoto, T.
    Matsuba, K.
    Nakamura, Y.
    Tsai, J. S.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 5: SUPERCONDUCTIVITY, 2009, 150
  • [23] Z-Gate Operation on a Superconducting Flux Qubit via its Readout SQUID
    Jin, X. Y.
    Gustavsson, S.
    Bylander, J.
    Yan, F.
    Yoshihara, F.
    Nakamura, Y.
    Orlando, T. P.
    Oliver, W. D.
    PHYSICAL REVIEW APPLIED, 2015, 3 (03):
  • [24] Circuit-QED based time-averaged dispersive readout of a semiconductor charge qubit
    Lin, Ting
    Gu, Si-Si
    Xu, Yong-Qiang
    Jiang, Shun-Li
    Wang, Ning
    Wang, Bao-Chuan
    Li, Hai-Ou
    Cao, Gang
    Guo, Guo-Ping
    APPLIED PHYSICS LETTERS, 2022, 121 (18)
  • [25] Improved Superconducting Qubit Readout by Qubit-Induced Nonlinearities
    Boissonneault, Maxime
    Gambetta, J. M.
    Blais, Alexandre
    PHYSICAL REVIEW LETTERS, 2010, 105 (10)
  • [26] Sequential Dispersive Measurement of a Superconducting Qubit
    Peronnin, T.
    Markovic, D.
    Ficheux, Q.
    Huard, B.
    PHYSICAL REVIEW LETTERS, 2020, 124 (18)
  • [27] Large dispersive shift of cavity resonance induced by a superconducting flux qubit in the straddling regime
    Inomata, K.
    Yamamoto, T.
    Billangeon, P. -M.
    Nakamura, Y.
    Tsai, J. S.
    PHYSICAL REVIEW B, 2012, 86 (14):
  • [28] Dephasing of a superconducting flux qubit
    Kakuyanagi, K.
    Meno, T.
    Saito, S.
    Nakano, H.
    Semba, K.
    Takayanagi, H.
    Deppe, F.
    Shnirman, A.
    PHYSICAL REVIEW LETTERS, 2007, 98 (04)
  • [29] A simulation methodology for superconducting qubit readout fidelity
    Wong, Hiu Yung
    Dhillon, Prabjot
    Beck, Kristin M.
    Rosen, Yaniv J.
    SOLID-STATE ELECTRONICS, 2023, 201
  • [30] Scalable Cryoelectronics for Superconducting Qubit Control and Readout
    Ahmad, Meraj
    Giagkoulovits, Christos
    Danilin, Sergey
    Weides, Martin
    Heidari, Hadi
    ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (09)