Sequential Dispersive Measurement of a Superconducting Qubit

被引:14
|
作者
Peronnin, T. [1 ]
Markovic, D. [2 ]
Ficheux, Q. [1 ]
Huard, B. [1 ]
机构
[1] Univ Claude Bernard Lyon 1, Lab Phys, CNRS, ENS Lyon,Univ Lyon, Lyon 69342, France
[2] Univ Paris Saclay, Univ Paris Sud, Unite Mixte Phys, CNRS, Palaiseau 91767, France
关键词
QUANTUM TRAJECTORIES; DYNAMICS;
D O I
10.1103/PhysRevLett.124.180502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a superconducting device that realizes the sequential measurement of a transmon qubit. The device disables common limitations of dispersive readout such as Purcell effect or transients in the cavity mode by turning on and off the coupling to the measurement channel on demand. The qubit measurement begins by loading a readout resonator that is coupled to the qubit. After an optimal interaction time with negligible loss, a microwave pump releases the content of the readout mode by upconversion into a measurement line in a characteristic time as low as 10 ns, which is 400 times shorter than the lifetime of the readout resonator. A direct measurement of the released field quadratures demonstrates a readout fidelity of 97.5% in a total measurement time of 220 ns. The Wigner tomography of the readout mode allows us to characterize the non-Gaussian nature of the readout mode and its dynamics.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Measurement of the superconducting flux qubit parameters in the quasi-dispersive regime
    I. L. Novikov
    B. I. Ivanov
    A. N. Sultanov
    Ya. S. Greenberg
    E. V. Il’ichev
    Physics of the Solid State, 2016, 58 : 2155 - 2159
  • [2] Measurement of the superconducting flux qubit parameters in the quasi-dispersive regime
    Novikov, I. L.
    Ivanov, B. I.
    Sultanov, A. N.
    Greenberg, Ya. S.
    Il'ichev, E. V.
    PHYSICS OF THE SOLID STATE, 2016, 58 (11) : 2155 - 2159
  • [3] NON-DEMOLITION DISPERSIVE MEASUREMENT OF A SUPERCONDUCTING QUBIT WITH A MICROSTRLP SQUID AMPLIFIER
    Berman, G. P.
    Kamenev, D. I.
    Kinion, D.
    Tsifrinovich, V. I.
    QUANTUM INFORMATION & COMPUTATION, 2012, 12 (7-8) : 541 - 552
  • [4] Dispersive reservoir influence on the superconducting phase qubit
    Hessian, H. A.
    Mohamed, A. -B. A.
    Homid, A. H.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (07)
  • [5] Dispersive qubit measurement by interferometry with parametric amplifiers
    Barzanjeh, Sh.
    DiVincenzo, D. P.
    Terhal, B. M.
    PHYSICAL REVIEW B, 2014, 90 (13):
  • [6] Approaching unit visibility for control of a superconducting qubit with dispersive readout
    Wallraff, A
    Schuster, DI
    Blais, A
    Frunzio, L
    Majer, J
    Devoret, MH
    Girvin, SM
    Schoelkopf, RJ
    PHYSICAL REVIEW LETTERS, 2005, 95 (06)
  • [7] Dispersive measurements of superconducting qubit coherence with a fast latching readout
    Siddiqi, I
    Vijay, R
    Metcalfe, M
    Boaknin, E
    Frunzio, L
    Schoelkopf, RJ
    Devoret, MH
    PHYSICAL REVIEW B, 2006, 73 (05):
  • [8] Quantum nondemolition measurement of a superconducting flux qubit
    Takashima, Kohji
    Nishida, Munehiro
    Matsuo, Shigemasa
    Hatakenaka, Noriyuki
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 945 - +
  • [9] Measurement of geometric dephasing using a superconducting qubit
    S. Berger
    M. Pechal
    P. Kurpiers
    A. A. Abdumalikov
    C. Eichler
    J. A. Mlynek
    A. Shnirman
    Yuval Gefen
    A. Wallraff
    S. Filipp
    Nature Communications, 6
  • [10] Measurement of geometric dephasing using a superconducting qubit
    Berger, S.
    Pechal, M.
    Kurpiers, P.
    Abdumalikov, A. A.
    Eichler, C.
    Mlynek, J. A.
    Shnirman, A.
    Gefen, Yuval
    Wallraff, A.
    Filipp, S.
    NATURE COMMUNICATIONS, 2015, 6