Review of The Application of Deep Learning in Fault Diagnosis

被引:0
|
作者
Zhou, Huaze [1 ]
Wang, Shujing [1 ]
Miao, Zhonghua [1 ]
He, Chuangxin [1 ]
Liu, Shuping [2 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai, Peoples R China
[2] Chinese Acad Agr Mechanizat Sci, Beijing 100083, Peoples R China
关键词
Deep learning; Fault diagnosis; Feature extraction; Multi-diagnostic method fusion; SYSTEM;
D O I
10.23919/chicc.2019.8865387
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, deep learning has shown its unique potentials and advantages in feature extraction and model fitting. Many scholars have applied deep learning to the field of fault diagnosis, and have achieved many results. In this paper, several typical methods based on deep learning have been introduced first, which can be employed to realize the fault diagnosis for industrial system. And then, this paper analyzes the characteristics and limitations of the fault detection model based on deep learning, and points out the importance of multi-diagnostic method fusion for the development of current intelligent fault diagnosis. Finally, the main functions and problems of in-depth learning in fault diagnosis are summarized, and the future research directions are prospected.
引用
收藏
页码:4951 / 4955
页数:5
相关论文
共 50 条
  • [31] A Deep Learning Model with Adaptive Learning Rate for Fault Diagnosis
    Zhai, Xiaodong
    Qiao, Fei
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 668 - 673
  • [32] Challenges and opportunities of deep learning-based process fault detection and diagnosis: a review
    Yu, Jianbo
    Zhang, Yue
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (01): : 211 - 252
  • [33] Challenges and opportunities of deep learning-based process fault detection and diagnosis: a review
    Jianbo Yu
    Yue Zhang
    Neural Computing and Applications, 2023, 35 : 211 - 252
  • [34] How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method
    Gao, Yuan
    Miyata, Shohei
    Akashi, Yasunori
    APPLIED ENERGY, 2023, 348
  • [35] Application of Manifold Learning to Machinery Fault Diagnosis
    Wang, Jiangping
    Duan, Tengfei
    Lei, Lujuan
    INTELLIGENT INFORMATION PROCESSING VIII, 2016, 486 : 41 - 49
  • [36] Deep Learning-Based Composite Fault Diagnosis
    An, Zining
    Wu, Fan
    Zhang, Cong
    Ma, Jinhao
    Sun, Bo
    Tang, Bihua
    Liu, Yuanan
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13 (02) : 572 - 581
  • [37] Improved Deep Learning Fusion Model in Fault Diagnosis
    Wang Y.
    Duan X.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2019, 39 (06): : 1271 - 1276
  • [38] Deep Learning Towards Intelligent Vehicle Fault Diagnosis
    Al-Zeyadi, Mohammed
    Andreu-Perez, Javier
    Hagras, Hani
    Royce, Chris
    Smith, Darren
    Rzonsowski, Piotr
    Malik, Ali
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [39] Deep transfer learning with metric structure for fault diagnosis
    Xiao, Yaqi
    Wang, Jiongqi
    He, Zhangming
    Zhou, Haiyin
    Zhu, Huibin
    KNOWLEDGE-BASED SYSTEMS, 2022, 256
  • [40] Deep Learning in Fault Diagnosis of Induction Motor Drives
    Chattopadhyay, Paramita
    Delpha, Claude
    Saha, Nilendu
    Sil, Jaya
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 1068 - 1073