How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method

被引:22
|
作者
Gao, Yuan [1 ]
Miyata, Shohei [1 ]
Akashi, Yasunori [1 ]
机构
[1] Univ Tokyo, Grad Sch Engn, Dept Architecture, Tokyo, Japan
关键词
Fault diagnostics; Interpretable deep learning; Model pruning; Convolutional neural network; NEURAL-NETWORK; SYSTEMS;
D O I
10.1016/j.apenergy.2023.121591
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Automated fault detection and diagnosis (AFDD) plays a crucial role in enhancing the energy efficiency of air conditioning systems. Deep learning has emerged as a promising tool for image classification, and its application in the context of AFDD of HVAC systems is gaining traction due to its exceptional performance. However, the deployment cost of deep models in practical scenarios is increased due to the large number of parameters and the lack of interpretability. This paper focuses on improving the potential of deep learning models for AFDD in real HVAC systems. We use pruning to reduce the number of parameters in the model and use layer-wise relevance propagation (LRP) to improve the interpretability of the model. The case study builds a simulation model and 31 kinds of fault data sets based on the actual HVAC in Japan. Based on the findings, Without loss of accuracy, the pruning method can reduce the model size by more than 99 % and maintain 90% classification accuracy. The LRP score allows model users to find out the input data that most affects the results at each diagnosis, improving interpretability.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Fault Diagnosis Based on Deep Learning
    Lv, Feiya
    Wen, Chenglin
    Bao, Zejing
    Liu, Meiqin
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 6851 - 6856
  • [2] DEEP LEARNING BASED METHOD FOR PRUNING DEEP NEURAL NETWORKS
    Li, Lianqiang
    Zhu, Jie
    Sun, Ming-Ting
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2019, : 312 - 317
  • [3] Clinical Interpretable Deep Learning Model for Glaucoma Diagnosis
    Liao, WangMin
    Zou, BeiJi
    Zhao, RongChang
    Chen, YuanQiong
    He, ZhiYou
    Zhou, MengJie
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (05) : 1405 - 1412
  • [4] Application of Rotating Machinery Fault Diagnosis Based on Deep Learning
    Cui, Wei
    Meng, Guoying
    Wang, Aiming
    Zhang, Xinge
    Ding, Jun
    SHOCK AND VIBRATION, 2021, 2021
  • [5] Review of The Application of Deep Learning in Fault Diagnosis
    Zhou, Huaze
    Wang, Shujing
    Miao, Zhonghua
    He, Chuangxin
    Liu, Shuping
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 4951 - 4955
  • [6] ROTOR RUBBING FAULT DIAGNOSIS METHOD BASED ON DEEP LEARNING
    Tao, Zhenyu
    Wu, Yafeng
    Chong, Zezhong
    Li, Jin
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 10B, 2024,
  • [7] A method of fault diagnosis for rotary equipment based on deep learning
    Zhang, Cheng
    Xu, Liqing
    Li, Xingwang
    Wang, Huiyun
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 958 - 962
  • [8] Bearing fault diagnosis method based on deep metric learning
    Li X.
    Xu Z.
    Xiong W.
    Wang Z.
    Tan J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (15): : 25 - 31
  • [9] A fault diagnosis method of bearings based on deep transfer learning
    Huang, Min
    Yin, Jinghan
    Yan, Shumin
    Xue, Pengcheng
    SIMULATION MODELLING PRACTICE AND THEORY, 2023, 122
  • [10] Monkeypox Diagnosis With Interpretable Deep Learning
    Ahsan, Md. Manjurul
    Ali, Md. Shahin
    Hassan, Md. Mehedi
    Abdullah, Tareque Abu
    Gupta, Kishor Datta
    Bagci, Ulas
    Kaushal, Chetna
    Soliman, Naglaa F.
    IEEE ACCESS, 2023, 11 : 81965 - 81980