How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method

被引:22
|
作者
Gao, Yuan [1 ]
Miyata, Shohei [1 ]
Akashi, Yasunori [1 ]
机构
[1] Univ Tokyo, Grad Sch Engn, Dept Architecture, Tokyo, Japan
关键词
Fault diagnostics; Interpretable deep learning; Model pruning; Convolutional neural network; NEURAL-NETWORK; SYSTEMS;
D O I
10.1016/j.apenergy.2023.121591
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Automated fault detection and diagnosis (AFDD) plays a crucial role in enhancing the energy efficiency of air conditioning systems. Deep learning has emerged as a promising tool for image classification, and its application in the context of AFDD of HVAC systems is gaining traction due to its exceptional performance. However, the deployment cost of deep models in practical scenarios is increased due to the large number of parameters and the lack of interpretability. This paper focuses on improving the potential of deep learning models for AFDD in real HVAC systems. We use pruning to reduce the number of parameters in the model and use layer-wise relevance propagation (LRP) to improve the interpretability of the model. The case study builds a simulation model and 31 kinds of fault data sets based on the actual HVAC in Japan. Based on the findings, Without loss of accuracy, the pruning method can reduce the model size by more than 99 % and maintain 90% classification accuracy. The LRP score allows model users to find out the input data that most affects the results at each diagnosis, improving interpretability.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Application of deep learning to fault diagnosis of rotating machineries
    Su, Hao
    Xiang, Ling
    Hu, Aijun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [22] Application of Deep Learning in Fault Diagnosis of Rotating Machinery
    Jiang, Wanlu
    Wang, Chenyang
    Zou, Jiayun
    Zhang, Shuqing
    PROCESSES, 2021, 9 (06)
  • [23] An intelligent belt wear fault diagnosis method based on deep learning
    Wang, Bingjun
    Dou, Dongyang
    Shen, Ning
    INTERNATIONAL JOURNAL OF COAL PREPARATION AND UTILIZATION, 2023, 43 (04) : 708 - 725
  • [24] Bearing fault diagnosis method based on compressed acquisition and deep learning
    Wen J.
    Yan C.
    Sun J.
    Qiao Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2018, 39 (01): : 171 - 179
  • [25] Fault Diagnosis Method Based on Deep Active Learning For MVB Network
    Yang Y.
    Wang L.
    Wang C.
    Wang H.
    Li Y.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2022, 57 (06): : 1342 - 1348+1385
  • [26] Power System Fault Diagnosis Method Based on Deep Reinforcement Learning
    Wang, Zirui
    Zhang, Ziqi
    Zhang, Xu
    Du, Mingxuan
    Zhang, Huiting
    Liu, Bowen
    ENERGIES, 2022, 15 (20)
  • [27] Research on Fault Diagnosis Method of Rotating Machinery Based on Deep Learning
    Chen, Zhouliang
    Li, Zhinong
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 1015 - +
  • [28] Chemical process fault diagnosis based on a combined deep learning method
    Bao, Yu
    Wang, Bo
    Guo, Pandeng
    Wang, Jingtao
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 100 (01): : 54 - 66
  • [29] Intelligent Fault Diagnosis Method for Gearboxes Based on Deep Transfer Learning
    Wu, Zhenghao
    Bai, Huajun
    Yan, Hao
    Zhan, Xianbiao
    Guo, Chiming
    Jia, Xisheng
    PROCESSES, 2023, 11 (01)
  • [30] Fault Diagnosis Model for Accessory Gearbox Based on Deep Transfer Learning
    Xiao, Bowen
    Yuan, Yunbo
    Sun, Ximing
    Ma, Song
    Zhao, Guang
    Wang, Feiming
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 446 - 451