How to improve the application potential of deep learning model in HVAC fault diagnosis: Based on pruning and interpretable deep learning method

被引:22
|
作者
Gao, Yuan [1 ]
Miyata, Shohei [1 ]
Akashi, Yasunori [1 ]
机构
[1] Univ Tokyo, Grad Sch Engn, Dept Architecture, Tokyo, Japan
关键词
Fault diagnostics; Interpretable deep learning; Model pruning; Convolutional neural network; NEURAL-NETWORK; SYSTEMS;
D O I
10.1016/j.apenergy.2023.121591
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Automated fault detection and diagnosis (AFDD) plays a crucial role in enhancing the energy efficiency of air conditioning systems. Deep learning has emerged as a promising tool for image classification, and its application in the context of AFDD of HVAC systems is gaining traction due to its exceptional performance. However, the deployment cost of deep models in practical scenarios is increased due to the large number of parameters and the lack of interpretability. This paper focuses on improving the potential of deep learning models for AFDD in real HVAC systems. We use pruning to reduce the number of parameters in the model and use layer-wise relevance propagation (LRP) to improve the interpretability of the model. The case study builds a simulation model and 31 kinds of fault data sets based on the actual HVAC in Japan. Based on the findings, Without loss of accuracy, the pruning method can reduce the model size by more than 99 % and maintain 90% classification accuracy. The LRP score allows model users to find out the input data that most affects the results at each diagnosis, improving interpretability.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Research on Ship Fault Diagnosis Based on Deep Learning
    Zhu Jun
    Wang Lei
    Zhang Di
    INTERNATIONAL CONFERENCE ON ENERGY, POWER AND MECHANICAL ENGINEERING (EPME2019), 2020, 793
  • [42] Motor Bearing Fault Diagnosis Based on Deep Learning
    Zhang, Wei
    Hu, Yong
    Zeng, Deliang
    Luo, Wei
    Li, Gengda
    Liu, Miao
    2019 20TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2019, : 8 - 14
  • [43] Deep Learning Based Approach for Bearing Fault Diagnosis
    He, Miao
    He, David
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (03) : 3057 - 3065
  • [44] Fault Diagnosis of Aeroengine Gear Based on Deep Learning
    Wan A.
    Yang J.
    Wang J.
    Chen T.
    Miao X.
    Huang J.
    Du X.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2022, 42 (06): : 1062 - 1067
  • [45] Analog Circuit Fault Diagnosis Based on Deep Learning
    Zhao, Dezan
    Xing, Jun
    Wang, Zhisen
    Proceedings of the 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016), 2016, 79 : 254 - 256
  • [46] Fault diagnosis of motor bearing based on deep learning
    Jian, Yifan
    Qing, Xianguo
    He, Liang
    Zhao, Yang
    Qi, Xiao
    Du, Ming
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (09)
  • [47] A survey on Deep Learning based bearing fault diagnosis
    Hoang, Duy-Tang
    Kang, Hee-Jun
    NEUROCOMPUTING, 2019, 335 : 327 - 335
  • [48] Bayesian deep learning: A model-based interpretable approach
    Matsubara, Takashi
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2020, 11 (01): : 16 - 35
  • [49] An interpretable ensemble method for deep representation learning
    Jiang, Kai
    Xiong, Zheli
    Yang, Qichong
    Chen, Jianpeng
    Chen, Gang
    ENGINEERING REPORTS, 2024, 6 (03)
  • [50] An Application Based on Deep Learning for Cancer Diagnosis
    Liu, Rongxing
    SECOND IYSF ACADEMIC SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING, 2021, 12079