Discovery Radiomics via a Mixture of Deep ConvNet Sequencers for Multi-parametric MRI Prostate Cancer Classification

被引:3
|
作者
Karimi, Amir-Hossein [1 ]
Chung, Audrey G. [2 ]
Shafiee, Mohammad Javad [2 ]
Khalvati, Farzad [4 ]
Haider, Masoom A. [4 ]
Ghodsi, Ali [3 ]
Wong, Alexander [2 ]
机构
[1] Univ Waterloo, Dept Comp Sci, Waterloo, ON, Canada
[2] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON, Canada
[3] Univ Waterloo, Dept Stat & Acturial Sci, Waterloo, ON, Canada
[4] Univ Toronto, Dept Med Imaging, Toronto, ON, Canada
来源
关键词
Discovery radiomics; Computer-aided prostate cancer classification; Multi-parametric magnetic resonance imaging (mpMRI); Mixture ConvNet; SEGMENTATION;
D O I
10.1007/978-3-319-59876-5_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prostate cancer is the most diagnosed form of cancer in men, but prognosis is relatively good with a sufficiently early diagnosis. Radiomics has been shown to be a powerful prognostic tool for cancer detection; however, these radiomics-driven methods currently rely on hand-crafted sets of quantitative imaging-based features, which can limit their ability to fully characterize unique prostate cancer tumour traits. We present a novel discovery radiomics framework via a mixture of deep convolutional neural network (ConvNet) sequencers for generating custom radiomic sequences tailored for prostate cancer detection. We evaluate the performance of the mixture of ConvNet sequencers against state-of-the-art hand-crafted radiomic sequencers for binary computer aided prostate cancer classification using real clinical prostate multi parametric MRI data. Results for the mixture of ConvNet sequencers demonstrate good performance in prostate cancer classification relative to the hand-crafted radiomic sequencers, and show potential for more efficient and reliable automatic prostate cancer classification.
引用
收藏
页码:45 / 53
页数:9
相关论文
共 50 条
  • [31] The Prostate Health Index aids multi-parametric MRI in diagnosing significant prostate cancer
    Fan, Yu-Hua
    Pan, Po-Hsun
    Cheng, Wei-Ming
    Wang, Hsin-Kai
    Shen, Shu-Huei
    Liu, Hsian-Tzu
    Cheng, Hao-Min
    Chen, Wei-Ren
    Huang, Tzu-Hao
    Wei, Tzu-Chun
    Huang, I-Shen
    Lin, Chih-Chieh
    Huang, Eric Y. H.
    Chung, Hsiao-Jen
    Huang, William J. S.
    Lin, Tzu-Ping
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [32] Multi-resolution super learner for voxel-wise classification of prostate cancer using multi-parametric MRI
    Jin, Jin
    Zhang, Lin
    Leng, Ethan
    Metzger, Gregory J.
    Koopmeiners, Joseph S.
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (03) : 805 - 826
  • [33] Implementation of Multi-parametric Prostate MRI in Clinical Practice
    Andrea S. Kierans
    Samir S. Taneja
    Andrew B. Rosenkrantz
    Current Urology Reports, 2015, 16
  • [34] A survey of denoising techniques for multi-parametric prostate MRI
    Garg, Gaurav
    Juneja, Mamta
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (10) : 12689 - 12722
  • [35] Implementation of Multi-parametric Prostate MRI in Clinical Practice
    Kierans, Andrea S.
    Taneja, Samir S.
    Rosenkrantz, Andrew B.
    CURRENT UROLOGY REPORTS, 2015, 16 (08)
  • [36] A survey of denoising techniques for multi-parametric prostate MRI
    Gaurav Garg
    Mamta Juneja
    Multimedia Tools and Applications, 2019, 78 : 12689 - 12722
  • [37] Multi-parametric MRI combined with radiomics for the diagnosis and grading of endometrial fibrosis
    Wang, Huanhuan
    Zhu, Li
    Zhu, Hui
    Meng, Jie
    Liang, Huanhuan
    Li, Danyan
    Hu, Yali
    Zhou, Zhengyang
    ABDOMINAL RADIOLOGY, 2025,
  • [38] Radiomics and quantitative multi-parametric MRI for predicting uterine fibroid growth
    Drukker, Karen
    Medved, Milica
    Harmath, Carla B.
    Giger, Maryellen L.
    Madueke-Laveaux, Obianuju S.
    JOURNAL OF MEDICAL IMAGING, 2024, 11 (05)
  • [39] Radiomics and quantitative multi-parametric MRI for predicting uterine fibroid growth
    Drukker, Karen
    Medved, Milica
    Harmath, Carla
    Giger, Maryellen L.
    Madueke-Laveaux, Obianuju S.
    COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024, 2024, 12927
  • [40] Ruling out clinically significant prostate cancer with negative multi-parametric MRI
    Julie Y. An
    Abhinav Sidana
    Sarah A. Holzman
    Joseph A. Baiocco
    Sherif Mehralivand
    Peter L. Choyke
    Bradford J. Wood
    Baris Turkbey
    Peter A. Pinto
    International Urology and Nephrology, 2018, 50 : 7 - 12