Discovery Radiomics via a Mixture of Deep ConvNet Sequencers for Multi-parametric MRI Prostate Cancer Classification

被引:3
|
作者
Karimi, Amir-Hossein [1 ]
Chung, Audrey G. [2 ]
Shafiee, Mohammad Javad [2 ]
Khalvati, Farzad [4 ]
Haider, Masoom A. [4 ]
Ghodsi, Ali [3 ]
Wong, Alexander [2 ]
机构
[1] Univ Waterloo, Dept Comp Sci, Waterloo, ON, Canada
[2] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON, Canada
[3] Univ Waterloo, Dept Stat & Acturial Sci, Waterloo, ON, Canada
[4] Univ Toronto, Dept Med Imaging, Toronto, ON, Canada
来源
关键词
Discovery radiomics; Computer-aided prostate cancer classification; Multi-parametric magnetic resonance imaging (mpMRI); Mixture ConvNet; SEGMENTATION;
D O I
10.1007/978-3-319-59876-5_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prostate cancer is the most diagnosed form of cancer in men, but prognosis is relatively good with a sufficiently early diagnosis. Radiomics has been shown to be a powerful prognostic tool for cancer detection; however, these radiomics-driven methods currently rely on hand-crafted sets of quantitative imaging-based features, which can limit their ability to fully characterize unique prostate cancer tumour traits. We present a novel discovery radiomics framework via a mixture of deep convolutional neural network (ConvNet) sequencers for generating custom radiomic sequences tailored for prostate cancer detection. We evaluate the performance of the mixture of ConvNet sequencers against state-of-the-art hand-crafted radiomic sequencers for binary computer aided prostate cancer classification using real clinical prostate multi parametric MRI data. Results for the mixture of ConvNet sequencers demonstrate good performance in prostate cancer classification relative to the hand-crafted radiomic sequencers, and show potential for more efficient and reliable automatic prostate cancer classification.
引用
收藏
页码:45 / 53
页数:9
相关论文
共 50 条
  • [21] Multi-parametric MRI for selection of suitability for active surveillance in prostate cancer
    Kavia, R. B. C.
    Feyisetan, O.
    Sahibzada, I.
    Chambers, A.
    Padhani, A.
    Hellawell, G.
    BJU INTERNATIONAL, 2011, 108 : 46 - 46
  • [22] Evaluation of intensity-based deformable registration of multi-parametric MRI for radiomics analysis of the prostate
    Alley, Stephanie
    Fedorov, Andrey
    Menard, Cynthia
    Kadoury, Samuel
    MEDICAL IMAGING 2020: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11317
  • [23] A boosting approach for prostate cancer detection using multi-parametric MRI
    Lemaitre, Guillaume
    Massich, Joan
    Marti, Robert
    Freixenet, Jordi
    Vilanova, Joan C.
    Walker, Paul M.
    Sidibe, Desire D.
    Meriaudeau, Fabrice
    TWELFTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION, 2015, 9534
  • [24] Machine learning for multi-parametric breast MRI: radiomics-based approaches for lesion classification
    Altabella, Luisa
    Benetti, Giulio
    Camera, Lucia
    Cardano, Giuseppe
    Montemezzi, Stefania
    Cavedon, Carlo
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (15):
  • [25] Zone-specific logistic regression models improve classification of prostate cancer on multi-parametric MRI
    Dikaios, Nikolaos
    Alkalbani, Jokha
    Abd-Alazeez, Mohamed
    Sidhu, Harbir Singh
    Kirkham, Alex
    Ahmed, Hashim U.
    Emberton, Mark
    Freeman, Alex
    Halligan, Steve
    Taylor, Stuart
    Atkinson, David
    Punwani, Shonit
    EUROPEAN RADIOLOGY, 2015, 25 (09) : 2727 - 2737
  • [26] Zone-specific logistic regression models improve classification of prostate cancer on multi-parametric MRI
    Nikolaos Dikaios
    Jokha Alkalbani
    Mohamed Abd-Alazeez
    Harbir Singh Sidhu
    Alex Kirkham
    Hashim U. Ahmed
    Mark Emberton
    Alex Freeman
    Steve Halligan
    Stuart Taylor
    David Atkinson
    Shonit Punwani
    European Radiology, 2015, 25 : 2727 - 2737
  • [27] Multi-Parametric MRI Combined with Radiomics for the Evaluation of Lymphovascular Space Invasion in Cervical Cancer
    Wang, Huanhuan
    Meng, Jie
    Dong, Guoqiang
    Zhu, Lijing
    Zhou, Zhengyang
    Jiang, Yuan
    Zhu, Li
    CLINICAL AND EXPERIMENTAL OBSTETRICS & GYNECOLOGY, 2024, 51 (04):
  • [28] Prostate cancer diagnosis based on multi-parametric MRI, clinical and pathological factors using deep learning
    Sherafatmandjoo, Haniye
    Safaei, Ali A.
    Ghaderi, Foad
    Allameh, Farzad
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [29] The Prostate Health Index aids multi-parametric MRI in diagnosing significant prostate cancer
    Yu-Hua Fan
    Po-Hsun Pan
    Wei-Ming Cheng
    Hsin-Kai Wang
    Shu-Huei Shen
    Hsian-Tzu Liu
    Hao-Min Cheng
    Wei-Ren Chen
    Tzu-Hao Huang
    Tzu-Chun Wei
    I-Shen Huang
    Chih-Chieh Lin
    Eric Y. H. Huang
    Hsiao-Jen Chung
    William J. S. Huang
    Tzu-Ping Lin
    Scientific Reports, 11
  • [30] Deep Learning Algorithms for Bladder Cancer Segmentation on Multi-Parametric MRI
    Gumus, Kazim Z.
    Nicolas, Julien
    Gopireddy, Dheeraj R.
    Dolz, Jose
    Jazayeri, Seyed Behzad
    Bandyk, Mark
    CANCERS, 2024, 16 (13)