Discovery Radiomics via a Mixture of Deep ConvNet Sequencers for Multi-parametric MRI Prostate Cancer Classification

被引:3
|
作者
Karimi, Amir-Hossein [1 ]
Chung, Audrey G. [2 ]
Shafiee, Mohammad Javad [2 ]
Khalvati, Farzad [4 ]
Haider, Masoom A. [4 ]
Ghodsi, Ali [3 ]
Wong, Alexander [2 ]
机构
[1] Univ Waterloo, Dept Comp Sci, Waterloo, ON, Canada
[2] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON, Canada
[3] Univ Waterloo, Dept Stat & Acturial Sci, Waterloo, ON, Canada
[4] Univ Toronto, Dept Med Imaging, Toronto, ON, Canada
来源
关键词
Discovery radiomics; Computer-aided prostate cancer classification; Multi-parametric magnetic resonance imaging (mpMRI); Mixture ConvNet; SEGMENTATION;
D O I
10.1007/978-3-319-59876-5_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prostate cancer is the most diagnosed form of cancer in men, but prognosis is relatively good with a sufficiently early diagnosis. Radiomics has been shown to be a powerful prognostic tool for cancer detection; however, these radiomics-driven methods currently rely on hand-crafted sets of quantitative imaging-based features, which can limit their ability to fully characterize unique prostate cancer tumour traits. We present a novel discovery radiomics framework via a mixture of deep convolutional neural network (ConvNet) sequencers for generating custom radiomic sequences tailored for prostate cancer detection. We evaluate the performance of the mixture of ConvNet sequencers against state-of-the-art hand-crafted radiomic sequencers for binary computer aided prostate cancer classification using real clinical prostate multi parametric MRI data. Results for the mixture of ConvNet sequencers demonstrate good performance in prostate cancer classification relative to the hand-crafted radiomic sequencers, and show potential for more efficient and reliable automatic prostate cancer classification.
引用
收藏
页码:45 / 53
页数:9
相关论文
共 50 条
  • [1] Classification of Clinically Significant Prostate Cancer on Multi-Parametric MRI: A Validation Study Comparing Deep Learning and Radiomics
    Castillo T., Jose M. M.
    Arif, Muhammad
    Starmans, Martijn P. A.
    Niessen, Wiro J.
    Bangma, Chris H.
    Schoots, Ivo G.
    Veenland, Jifke F.
    CANCERS, 2022, 14 (01)
  • [2] Multi-view radiomics and deep learning modeling for prostate cancer detection based on multi-parametric MRI
    Li, Chunyu
    Deng, Ming
    Zhong, Xiaoli
    Ren, Jinxia
    Chen, Xiaohui
    Chen, Jun
    Xiao, Feng
    Xu, Haibo
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [3] Automatic classification and localization of prostate cancer using multi-parametric MRI/MRS
    Trigui, R.
    Miteran, J.
    Walker, P. M.
    Sellami, L.
    Ben Hamida, A.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 31 : 189 - 198
  • [4] Role of multi-parametric (mp) MRI in prostate cancer
    Nazim, Syed Muhammad
    Ather, Muhammad Hammad
    Salam, Basit
    JOURNAL OF THE PAKISTAN MEDICAL ASSOCIATION, 2018, 68 (01) : 98 - 104
  • [5] Multi-parametric MRI Examinations for the Detection of Prostate Cancer
    Graewert, Stephanie
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2019, 191 (03): : 185 - 185
  • [6] Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI
    Xinran Zhong
    Ruiming Cao
    Sepideh Shakeri
    Fabien Scalzo
    Yeejin Lee
    Dieter R. Enzmann
    Holden H. Wu
    Steven S. Raman
    Kyunghyun Sung
    Abdominal Radiology, 2019, 44 : 2030 - 2039
  • [7] Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI
    Zhong, Xinran
    Cao, Ruiming
    Shakeri, Sepideh
    Scalzo, Fabien
    Lee, Yeejin
    Enzmann, Dieter R.
    Wu, Holden H.
    Raman, Steven S.
    Sung, Kyunghyun
    ABDOMINAL RADIOLOGY, 2019, 44 (06) : 2030 - 2039
  • [8] The use of multi-parametric MRI in the detection of prostate cancer
    Bolton, E. M.
    Quinlan, M.
    Costelloe, J.
    O'Kelly, F.
    Galvin, D.
    Lennon, G.
    Mulvin, D.
    McMahon, C.
    Quinlan, D.
    BJU INTERNATIONAL, 2014, 114 : 21 - 22
  • [9] Development of a Computer Aided Diagnosis Model for Prostate Cancer Classification on Multi-Parametric MRI
    Alfano, R.
    Soetemans, D.
    Bauman, G. S.
    Gibson, E.
    Gaed, M.
    Moussa, M.
    Gomez, J. A.
    Chin, J. L.
    Pautler, S.
    Ward, A. D.
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [10] A classification approach to prostate cancer localization in 3T Multi-Parametric MRI
    Trigui, Rania
    Miteran, Johel
    Sellami, Lamia
    Walker, Paul
    Ben Hamida, Ahmed
    2016 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2016, : 113 - 118