Improving QoT Estimation Accuracy with DGE Monitoring using Machine Learning

被引:0
|
作者
Mahajan, Ankush [1 ]
Christodoulopoulos, Kostas [3 ]
Martinez, Ricardo [1 ]
Spadaro, Salvatore [2 ]
Munoz, Raul [1 ]
机构
[1] Ctr Tecnol Telecomunicac Catalunya CTTC CERCA, Barcelona, Spain
[2] Polytech Univ Catalonia UPC, Barcelona, Spain
[3] Nokia Bell Labs, Stuttgart, Germany
关键词
Optical Network; QoT Estimation; Monitoring; Machine Learning; Margins;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In optical transport networks, Dynamic Gain Equalizers (DGE) are typically used at each link. A DGE selectively attenuates the channels to compensate the cumulative Erbium Doped Fiber Amplifier (EDFA) gain ripple effect on the multi-span link, resulting in almost flat output power at the end of the link. We leverage monitored per link DGE attenuation profiles and coherent receivers Signal to Noise Ratio (SNR) information, and propose a machine learning (ML) based scheme to estimate the EDFA gain ripple penalties for new connections. Using that in realistic simulation scenarios we observed a design margin reduction from similar to 1dB to similar to 0.3dBs.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Deep Learning for QoT Estimation in SMF and FMF Links
    Amirabadi, M. A.
    Kahaei, M. H.
    Nezamalhosseini, S. A.
    Carena, A.
    2022 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE, ACP, 2022, : 685 - 687
  • [42] Advanced Formulation of QoT-Estimation for Un-established Lightpaths Using Cross-train Machine Learning Methods
    Khan, Ihtesham
    Bilal, Muhammad
    Curri, Vittorio
    2020 22ND INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2020), 2020,
  • [43] Assessment of cross-train machine learning techniques for QoT-estimation in agnostic optical networks
    Khan, Ihtesham
    Bilal, Muhammad
    Curri, Vittorio
    OSA CONTINUUM, 2020, 3 (10): : 2690 - 2706
  • [44] Improving the Wet Refractivity Estimation Using the Extremely Learning Machine (ELM) Technique
    Forootan, Ehsan
    Dehvari, Masood
    Farzaneh, Saeed
    Karimi, Sedigheh
    ATMOSPHERE, 2023, 14 (01)
  • [45] Improving the Estimation of Weighted Mean Temperature in China Using Machine Learning Methods
    Sun, Zhangyu
    Zhang, Bao
    Yao, Yibin
    REMOTE SENSING, 2021, 13 (05) : 1 - 18
  • [46] Improving Cost Estimation in Internet Advertising Using Machine Learning: Preliminary Results
    Tahmaz, Seyma
    Unalir, Murat Osman
    Giray, Gorkem
    Kocer, Sena
    2020 TURKISH NATIONAL SOFTWARE ENGINEERING SYMPOSIUM (UYMS), 2020, : 184 - 188
  • [47] Improving Behavior Prediction Accuracy by Using Machine Learning for Agent-Based Simulation
    Hayashi, Shinji
    Prasasti, Niken
    Kanamori, Katsutoshi
    Ohwada, Hayato
    Intelligent Information and Database Systems, ACIIDS 2016, Pt I, 2016, 9621 : 280 - 289
  • [48] Improving the Accuracy of Continuous Blood Glucose Measurement Using Personalized Calibration and Machine Learning
    Kumari, Ranjita
    Anand, Pradeep Kumar
    Shin, Jitae
    DIAGNOSTICS, 2023, 13 (15)
  • [49] Improving GPS Code Phase Positioning Accuracy in Urban Environments Using Machine Learning
    Sun, Rui
    Wang, Guanyu
    Cheng, Qi
    Fu, Linxia
    Chiang, Kai-Wei
    Hsu, Li-Ta
    Ochieng, Washington Yotto
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (08) : 7065 - 7078
  • [50] Improving accuracy of code smells detection using machine learning with data balancing techniques
    Khleel, Nasraldeen Alnor Adam
    Nehez, Karoly
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (14): : 21048 - 21093