Improving QoT Estimation Accuracy with DGE Monitoring using Machine Learning

被引:0
|
作者
Mahajan, Ankush [1 ]
Christodoulopoulos, Kostas [3 ]
Martinez, Ricardo [1 ]
Spadaro, Salvatore [2 ]
Munoz, Raul [1 ]
机构
[1] Ctr Tecnol Telecomunicac Catalunya CTTC CERCA, Barcelona, Spain
[2] Polytech Univ Catalonia UPC, Barcelona, Spain
[3] Nokia Bell Labs, Stuttgart, Germany
关键词
Optical Network; QoT Estimation; Monitoring; Machine Learning; Margins;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In optical transport networks, Dynamic Gain Equalizers (DGE) are typically used at each link. A DGE selectively attenuates the channels to compensate the cumulative Erbium Doped Fiber Amplifier (EDFA) gain ripple effect on the multi-span link, resulting in almost flat output power at the end of the link. We leverage monitored per link DGE attenuation profiles and coherent receivers Signal to Noise Ratio (SNR) information, and propose a machine learning (ML) based scheme to estimate the EDFA gain ripple penalties for new connections. Using that in realistic simulation scenarios we observed a design margin reduction from similar to 1dB to similar to 0.3dBs.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Improving Precision GNSS Positioning and Navigation Accuracy on Smartphones using Machine Learning
    Siemuri, Akpojoto
    Selvan, Kannan
    Kuusniemi, Heidi
    Valisuo, Petri
    Elmusrati, Mohammed S.
    PROCEEDINGS OF THE 34TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2021), 2021, : 3081 - 3093
  • [32] Improving the classification accuracy using biomarkers selected from machine learning methods
    Rodrigo, Linduni M.
    Polpitiya, Ashoka D.
    CONTROL THEORY AND TECHNOLOGY, 2021, 19 (04) : 538 - 543
  • [33] Improving TDoA based Positioning Accuracy using Machine Learning in a LoRaWAN Environment
    Cho, JaeSik
    Hwang, DongYeop
    Kim, Ki-Hyung
    33RD INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2019), 2019, : 469 - 472
  • [34] Improving Industrial Robot Positioning Accuracy to the Microscale Using Machine Learning Method
    Bucinskas, Vytautas
    Dzedzickis, Andrius
    Sumanas, Marius
    Sutinys, Ernestas
    Petkevicius, Sigitas
    Butkiene, Jurate
    Virzonis, Darius
    Morkvenaite-Vilkonciene, Inga
    MACHINES, 2022, 10 (10)
  • [35] Improving the accuracy of QoT estimation with insertion loss distribution evaluation for C plus L band transmission systems
    Zhou, Jing
    Lu, Jianing
    Yu, Changyuan
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2024, 16 (01) : 12 - 20
  • [36] Improving accuracy of automatic optical inspection with machine learning
    Xinyu Tong
    Ziao Yu
    Xiaohua Tian
    Houdong Ge
    Xinbing Wang
    Frontiers of Computer Science, 2022, 16
  • [37] Improving the Machine Learning Prediction Accuracy with Clustering Discretization
    Gao, Chunlan
    Zhang, Yanqing
    Lo, Dan
    Shi, Yong
    Huang, Jian
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 513 - 517
  • [38] Improving accuracy of automatic optical inspection with machine learning
    TONG Xinyu
    YU Ziao
    TIAN Xiaohua
    GE Houdong
    WANG Xinbing
    Frontiers of Computer Science, 2022, 16 (01)
  • [39] Improving accuracy of automatic optical inspection with machine learning
    Tong, Xinyu
    Yu, Ziao
    Tian, Xiaohua
    Ge, Houdong
    Wang, Xinbing
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (01)
  • [40] Improving the accuracy of dynamic inclination measurement by machine learning
    Liu, Qiwei
    Kong, Fanmin
    Chen, Xiaolong
    Wang, Guangsheng
    Li, Kang
    SCIENTIFIC REPORTS, 2024, 14 (01):