Improving QoT Estimation Accuracy with DGE Monitoring using Machine Learning

被引:0
|
作者
Mahajan, Ankush [1 ]
Christodoulopoulos, Kostas [3 ]
Martinez, Ricardo [1 ]
Spadaro, Salvatore [2 ]
Munoz, Raul [1 ]
机构
[1] Ctr Tecnol Telecomunicac Catalunya CTTC CERCA, Barcelona, Spain
[2] Polytech Univ Catalonia UPC, Barcelona, Spain
[3] Nokia Bell Labs, Stuttgart, Germany
关键词
Optical Network; QoT Estimation; Monitoring; Machine Learning; Margins;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In optical transport networks, Dynamic Gain Equalizers (DGE) are typically used at each link. A DGE selectively attenuates the channels to compensate the cumulative Erbium Doped Fiber Amplifier (EDFA) gain ripple effect on the multi-span link, resulting in almost flat output power at the end of the link. We leverage monitored per link DGE attenuation profiles and coherent receivers Signal to Noise Ratio (SNR) information, and propose a machine learning (ML) based scheme to estimate the EDFA gain ripple penalties for new connections. Using that in realistic simulation scenarios we observed a design margin reduction from similar to 1dB to similar to 0.3dBs.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Improving QoT Estimation Accuracy through Active Monitoring
    Sartzetakis, Ippokratis
    Christodoulopoulos, Konstantinos
    Varvarigos, Emmanouel
    2017 19TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2017,
  • [2] QoT Estimation for Unestablished Lighpaths using Machine Learning
    Barletta, Luca
    Giusti, Alessandro
    Rottondi, Cristina
    Tornatore, Massimo
    2017 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2017,
  • [3] Formulating QoT Estimation with Machine Learning
    Sartzetakis, Ippokratis
    Christodoulopoulos, Konstantinos
    Varvarigos, Emmanuel
    2018 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2018,
  • [4] Evaluating Machine Learning Models for QoT Estimation
    Morais, Rui Manuel
    Pedro, Joao
    2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2018,
  • [5] Machine learning regression for QoT estimation of unestablished lightpaths
    Ibrahimi, Memedhe
    Abdollahi, Hatef
    Rottondi, Cristina
    Giusti, Alessandro
    Ferrari, Alessio
    Curri, Vittorio
    Tornatore, Massimo
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2021, 13 (04) : B92 - B101
  • [6] Machine Learning for QoT Estimation of Unseen Optical Network States
    Panayiotou, Tania
    Savva, Giannis
    Shariati, Behnam
    Tomkos, Ioannis
    Ellinas, Georgios
    2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2019,
  • [7] Machine-Learning-Based Lightpath QoT Estimation and Forecasting
    Allogba, Stephanie
    Aladin, Sandra
    Tremblay, Christine
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (10) : 3115 - 3127
  • [8] A QoT Estimation Method using EGN-assisted Machine Learning for Network Planning Applications
    Mueller, Jasper
    Patri, Sai Kireet
    Fehenberger, Tobias
    Mas-Machuca, Carmen
    Griesser, Helmut
    Elbers, Joerg-Peter
    2021 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2021,
  • [9] Improving accuracy on wave height estimation through machine learning techniques
    Gracia, S.
    Olivito, J.
    Resano, J.
    Martin-del-Brio, B.
    de Alfonso, M.
    Alvarez, E.
    OCEAN ENGINEERING, 2021, 236
  • [10] IMPROVING MODEL ACCURACY OF THE "LUNG AGE" ESTIMATION THROUGH MACHINE LEARNING
    Johnson, Patrick
    Lee, Augustine S.
    Quicksall, Zachary
    Lim, Kaiser G.
    Niven, Alexander S.
    Ortega, Victor E.
    Cartin-Ceba, Rodrigo
    Poliszuk, Daniel
    Helgeson, Scott
    CHEST, 2022, 162 (04) : 2270A - 2270A