Cisoid parameter estimation in the colored noise case: Asymptotic Cramer-Rao bound, maximum likelihood, and nonlinear least-squares

被引:77
|
作者
Stoica, P [1 ]
Jakobsson, A [1 ]
Li, J [1 ]
机构
[1] UNIV FLORIDA,DEPT ELECT ENGN,GAINESVILLE,FL 32611
基金
美国国家科学基金会;
关键词
D O I
10.1109/78.611203
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of estimating the parameters of complex-valued sinusoidal signals (cisoids, for short) from data corrupted by colored noise occurs in many signal processing applications, We present a simple formula for the asymptotic (large-sample) Cramer-Rao bound (CRB) matrix associated with this problem. The maximum likelihood method (MLM), which estimates both the signal and noise parameters, attains the performance corresponding to the asymptotic CRB, as the sample length increases. More interestingly, we show that a computationally much simpler nonlinear least-squares method (NLSM), which estimates the signal parameters only, achieves the same performance in large samples.
引用
收藏
页码:2048 / 2059
页数:12
相关论文
共 50 条
  • [31] Maximum likelihood and Cramer-Rao lower bound estimators for (nonlinear) bearing only passive target tracking
    Rao, SK
    CONFERENCE RECORD OF THE THIRTY-SECOND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1998, : 441 - 444
  • [32] TDOA Based Direct Positioning Maximum Likelihood Estimator and the Cramer-Rao Bound
    Vankayalapati, Naresh
    Kay, Steven
    Ding, Quan
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2014, 50 (03) : 1616 - 1635
  • [33] Theoretical range precision obtained by maximum likelihood estimation in laser radar compared with the Cramer-Rao bound
    Gu, Zhiyong
    Lai, Jiancheng
    Wang, Chunyong
    Yan, Wei
    Ji, Yunjing
    Li, Zhenhua
    APPLIED OPTICS, 2018, 57 (34) : 9951 - 9957
  • [34] Cramer-Rao Bound and Approximate Maximum Likelihood Estimation for Non-Coherent Direction of Arrival Problem
    Jiang, Wei
    Haimovich, Alexander M.
    2016 ANNUAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (CISS), 2016,
  • [35] Cramer-Rao Bound for Parameter Estimation in Sensor Arrays with Mutual Coupling
    Pascual, J. P.
    von Ellenrieder, N.
    Muravchik, C. H.
    IEEE LATIN AMERICA TRANSACTIONS, 2013, 11 (01) : 91 - 96
  • [36] ANALYSIS OF FISHER INFORMATION AND THE CRAMER-RAO BOUND FOR NONLINEAR PARAMETER ESTIMATION AFTER COMPRESSED SENSING
    Pakrooh, Pooria
    Scharf, Louis L.
    Pezeshki, Ali
    Chi, Yuejie
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 6630 - 6634
  • [37] A "Reciprocity" Property of the Unbiased Cramer-Rao Bound for Vector Parameter Estimation
    D'Amico, Antonio A.
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (05) : 615 - 619
  • [38] Bayesian Cramer-Rao Bound for Nonlinear Filtering with Dependent Noise Processes
    Fritsche, Carsten
    Saha, Saikat
    Gustafsson, Fredrik
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 797 - 804
  • [39] Analysis of Fisher Information and the Cramer-Rao Bound for Nonlinear Parameter Estimation After Random Compression
    Pakrooh, Pooria
    Pezeshki, Ali
    Scharf, Louis L.
    Cochran, Douglas
    Howard, Stephen D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (23) : 6423 - 6428
  • [40] Cramer-Rao lower bound and parameter estimation for multibeam satellite links
    Gappmair, Wilfried
    Ginesi, Alberto
    INTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, 2017, 35 (04) : 343 - 357