ANALYSIS OF FISHER INFORMATION AND THE CRAMER-RAO BOUND FOR NONLINEAR PARAMETER ESTIMATION AFTER COMPRESSED SENSING

被引:0
|
作者
Pakrooh, Pooria [1 ]
Scharf, Louis L. [2 ]
Pezeshki, Ali [1 ]
Chi, Yuejie [3 ]
机构
[1] Colorado State Univ, ECE Dept, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Math & Stat, Ft Collins, CO 80523 USA
[3] Ohio State Univ, Dept ECE & Biomed Informat, Columbus, OH 43210 USA
关键词
Cramer-Rao bound; compressed sensing; Fisher information; Johnson-Lindenstrauss Lemma; parameter estimation; MATRICES; PROOF;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we analyze the impact of compressed sensing with random matrices on Fisher information and the CRB for estimating unknown parameters in the mean value function of a multivariate normal distribution. We consider the class of random compression matrices that satisfy a version of the Johnson-Lindenstrauss lemma, and we derive analytical lower and upper bounds on the CRB for estimating parameters from randomly compressed data. These bounds quantify the potential loss in CRB as a function of Fisher information of the non-compressed data. In our numerical examples, we consider a direction of arrival estimation problem and compare the actual loss in CRB with our bounds.
引用
收藏
页码:6630 / 6634
页数:5
相关论文
共 50 条
  • [1] Analysis of Fisher Information and the Cramer-Rao Bound for Nonlinear Parameter Estimation After Random Compression
    Pakrooh, Pooria
    Pezeshki, Ali
    Scharf, Louis L.
    Cochran, Douglas
    Howard, Stephen D.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (23) : 6423 - 6428
  • [2] Cramer-Rao lower bound for parameter estimation in nonlinear systems
    Lin, ZP
    Zou, QY
    Ward, ES
    Ober, RJ
    IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (12) : 855 - 858
  • [3] On the Achievability of Cramer-Rao Bound in Noisy Compressed Sensing
    Niazadeh, Rad
    Babaie-Zadeh, Massoud
    Jutten, Christian
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (01) : 518 - 526
  • [4] The modified Cramer-Rao bound in vector parameter estimation
    Gini, F
    Reggiannini, R
    Mengali, U
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1998, 46 (01) : 52 - 60
  • [5] Adaptive Compressed Sensing via Minimizing Cramer-Rao Bound
    Huang, Tianyao
    Liu, Yimin
    Meng, Huadong
    Wang, Xiqin
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (03) : 270 - 274
  • [6] On the Constrained Cramer-Rao Bound With a Singular Fisher Information Matrix
    Ben-Haim, Zvika
    Eldar, Yonina C.
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (06) : 453 - 456
  • [7] A CONSTRAINED HYBRID CRAMER-RAO BOUND FOR PARAMETER ESTIMATION
    Ren, Chengfang
    Le Kernec, Julien
    Galy, Jerome
    Chaumette, Eric
    Larzabal, Pascal
    Renaux, Alexandre
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3472 - 3476
  • [8] Fisher information and Cramer-Rao bound for unknown systematic errors
    Fischer, Andreas
    MEASUREMENT, 2018, 113 : 131 - 136
  • [9] Compressed Arrays and Hybrid Channel Sensing: A Cramer-Rao Bound Based Analysis
    Koochakzadeh, Ali
    Pal, Piya
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1395 - 1399
  • [10] On the Cramer-Rao bound applicability and the role of Fisher information in computational neuroscience
    Pilarski, Stevan
    Pokora, Ondrej
    BIOSYSTEMS, 2015, 136 : 11 - 22