In this paper, we analyze the impact of compressed sensing with random matrices on Fisher information and the CRB for estimating unknown parameters in the mean value function of a multivariate normal distribution. We consider the class of random compression matrices that satisfy a version of the Johnson-Lindenstrauss lemma, and we derive analytical lower and upper bounds on the CRB for estimating parameters from randomly compressed data. These bounds quantify the potential loss in CRB as a function of Fisher information of the non-compressed data. In our numerical examples, we consider a direction of arrival estimation problem and compare the actual loss in CRB with our bounds.
机构:
Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USAColorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
Pakrooh, Pooria
论文数: 引用数:
h-index:
机构:
Pezeshki, Ali
Scharf, Louis L.
论文数: 0引用数: 0
h-index: 0
机构:
Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USAColorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
Scharf, Louis L.
Cochran, Douglas
论文数: 0引用数: 0
h-index: 0
机构:
Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USAColorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
Cochran, Douglas
Howard, Stephen D.
论文数: 0引用数: 0
h-index: 0
机构:
Def Sci & Technol Org, Edinburgh, SA 5111, AustraliaColorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA