A note on the independence number, domination number and related parameters of random binary search trees and random recursive trees

被引:4
|
作者
Fuchs, Michael [1 ]
Holmgren, Cecilia [2 ]
Mitsche, Dieter [3 ]
Neininger, Ralph [4 ]
机构
[1] Natl Chengchi Univ, Dept Math Sci, Taipei, Taiwan
[2] Uppsala Univ, Dept Math, Uppsala, Sweden
[3] Univ Lyon, Univ Jean Monnet, Inst Camille Jordan UMR 5208, Lyon, France
[4] Goethe Univ Frankfurt, Inst Math, Frankfurt, Germany
关键词
Independence number; Domination number; Clique cover number; Random recursive trees; Random binary search trees; Fringe trees; Central limit laws; LIMIT LAWS; ALGORITHMS; SETS;
D O I
10.1016/j.dam.2020.12.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We identify the mean growth of the independence number of random binary search trees and random recursive trees and show normal fluctuations around their means. Similarly we also show normal limit laws for the domination number and variations of it for these two cases of random tree models. Our results are an application of a recent general theorem of Holmgren and Janson on fringe trees in these two random tree models. (C) 2020 Published by Elsevier B.V.
引用
收藏
页码:64 / 71
页数:8
相关论文
共 50 条
  • [41] Isolation Number versus Domination Number of Trees
    Lemanska, Magdalena
    Jose Souto-Salorio, Maria
    Dapena, Adriana
    Vazquez-Araujo, Francisco J.
    MATHEMATICS, 2021, 9 (12)
  • [42] On the number of spanning trees in random regular graphs
    Greenhill, Catherine
    Kwan, Matthew
    Wind, David
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [43] To tune or not to tune the number of trees in random forest
    Probst, Philipp
    Boulesteix, Anne-Laure
    Journal of Machine Learning Research, 2018, 18 : 1 - 8
  • [44] The number of descendants in simply generated random trees
    Gittenberger, B
    MATHEMATICS AND COMPUTER SCIENCE: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2000, : 65 - 73
  • [45] To Tune or Not to Tune the Number of Trees in Random Forest
    Probst, Philipp
    Boulesteix, Anne-Laure
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [46] Trees with paired-domination number twice their domination number
    Henning, Michael A.
    Vestergaard, Preben Dahl
    UTILITAS MATHEMATICA, 2007, 74 : 187 - 197
  • [47] Percolation on random recursive trees
    Baur, Erich
    RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (04) : 655 - 680
  • [48] Protection Number of Recursive Trees
    Golebiewski, Zbigniew
    Klimczak, Mateusz
    2019 PROCEEDINGS OF THE MEETING ON ANALYTIC ALGORITHMICS AND COMBINATORICS, ANALCO, 2019, : 45 - 53
  • [49] Random recursive trees and the elephant random walk
    Kuersten, Ruediger
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [50] BROADCASTING ON RANDOM RECURSIVE TREES
    Addario-Berry, Louigi
    Devroye, Luc
    Lugosi, Gabor
    Velona, Vasiliki
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (01): : 497 - 528